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LONG-TERM GOAL 
 
The goal of this project is to develop a broadly-capable software package, which can automatically classify 
digital images of zooplankton. The software is being developed initially for classification of images from 
the SIPPER linescan imaging instrument, but has a wider application to alternate imaging systems where 
high quality digital images are available. Toward this end, the software is being developed to include both 
training and multi-stage classification portions. The input is digital images in standard computer format. A 
database-addressable classified particle list, including pertinent paritcle information and sorted images is 
the output. The project has application in rapid classification of microscopic marine particles, which have 
an effect on the instant optical properties and long-term variation in the local and global water column.  
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OBJECTIVES 
 
The project’s objective is to develop automated image analysis software to reduce the effort and time 
required by manual identification of plankton images. The software will include a training phase, 
identification phase, and a database retrieval phase. The training phase will allow a trained user to enter 
expert-classified particle images into the system. The output will be a set of distinctive features, and a 
classification scheme (neural net, support vector machine, etc.), which will be used as control parameters 
during the identification phase. The identification phase will include pre-processing to eliminate noise, 
feature computation, and image classification. The database retrieval phase will include a method to track 
and efficiently retrieve information (particle identity, size, features, location) on the anticipated billions of 
particles. The software is being developed for use on a commercially available personal computer, to allow 
possible widespread use. 
 
APPROACH 
 
The testing and development of automated plankton image recognition software will rely on high-
resolution binary SIPPER images [1] obtained in the field in the eastern Gulf of Mexico, from another 
ONR project (N00014-96-1-5020). The development will initially use a broad range of manually 
identified plankton images for the development, characterization, and comparison of various 
algorithms; the images encompass a challenging, yet accurate representation of the diverse subtropical 
coastal ecosystem sampled. The software will build on previously reported work that sorted images 
from a more restrictive sample-set [2]. The approach can be broadly broken into several tasks. The first 
is the extraction of image particle features. The features from the manually classified training data will 
act as inputs to a training set development. Several techniques (discussed below) will be attempted and 
their performance compared. Using accepted methods, the feature set and classification scheme will be 
optimized. Performance with the inclusion of the expected noise class (non-identifiable particles) will 
be studied. Using the aforementioned results, software will be developed for classification of the 
unidentified images. The developed software will be field-tunable for application in differing 
ecosystems. Finally, a database for efficient retrieval of the classified images and their pertinent 
information (geographic location, size, identification) will be developed.  
 
Graduate students Tong Luo and Kurt Kramer are primarily involved in implementation of the 
software, with guidance provided by Drs. Dmitry Goldgof and Lawrence Hall. Xiaoou Tang, from the 
Chinese University of Hong Kong is acting as a technical consultant on the project, primarily in the 
development of advanced features applicable to plankton. Marine science graduate student Andrew 
Remsen, and Dr. Tom Hopkins are providing biological expertise and manually classified images, 
while Scott Samson is acting as project manager.  
 
WORK COMPLETED 
 
Since the project inception, we have manually classified several thousand digital SIPPER images from 
Gulf-of-Mexico transects. The classes include a number of opaque and semi-transparent plankton: 
trichodesmium, siphonophores, shrimps, salps, protests, polychaetes, ostracods, mollusks, larvaceans, 
gelatinous plankton, doliolids, acantharians, diatoms, chateognaths, and several types of copepods. 
Additionally, images of unidentifiable particles have been found. 
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Software has been developed to exclude small noise pixels in the vicinity of the larger plankton 
images. Working with the biologists, the computer processing group has developed and computed a 
rich feature set. These features (numeric values derived from the input image) include: size, convex 
ratio (roughly-a ratio of particle bounding area to its footprint), object transparency, fourteen moments 
invariant to rotation, translation, and scaling, seven granulometric features, and a custom “head” 
feature. A total of 29 features extraction algorithms have been selected and implemented. These 
features, or a subset of them, act as input vectors to the classification stage.  
 
Four algorithms have been developed or tested to classify the plankton images, using the extracted 
features. A K-Nearest Neighborhood (KNN) method creates a matrix of features from each image in 
the training data; a classification decision is made on which training images the current image most 
closely matches. The decision tree (DT) method uses a divide-and-conquer strategy to split the features 
and build a decision tree. We have used software developed by Quinlan [3] for this work. A Cascade-
Correlation Neural Network (CCNN) from CMU [4] has been used to test a neural network 
architecture. The CCNN differs from a back-propagation learning method in that it dynamically adds 
additional neurons to the classifier as needed. The final method, Support Vector Machine (SVM) [5], 
is used to map the input feature set into a multi-dimensional feature space. A set of hyper-planes is 
determined to minimize classification error for the training set images. These then become the decision 
boundaries for the unclassified images. We have used both Svmfu2.004 [6] and Libsvm [7] software. 
 
Initial experiments have been performed using 15 of the 29 extracted features as inputs to the four 
different classification algorithms, using a randomly sampled subset of 1,285 images (64 diatoms, 100 
acantharians, 321 doliolids, 366 larvaceans, 434 trichodesmium), which represented the real-world 
distribution of these particles. Example images are shown in Fig. 1. A 10-fold cross validation (using 
90% of images as training set, and 10% as unknowns, running ten times, then averaging the 
classification accuracy) was run on each of the four classification schemes. The accuracies over 10-
fold cross validation are: SVM = 88.25%, CCNN = 87.25%, KNN (k = 3) = 85.21%, and DT = 
83.27%. 
 
 

 
 A B C D E 

 
Figure 1- Example binary images of the five classes used in the initial feature selection and 

classification performance experiments. A-diatom, B-acantharian, C-doliolid, D-larvacean, E- 
trichodesmium. 

 
 
Several features may be redundant or actually detrimental to classification accuracy; however, we 
don’t know a priori which ones are helpful, so we performed a brute-force minimized feature set 
selection. This involved tests using feature sets of all possibilities in which one and/or two features 
were removed from an early 15-features set.  In addition, tests utilizing all 3003 possible combinations 
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of just five out of the 15 features were used. The experiment showed that we could increase the 
accuracy by reducing the number of features. Some classifiers still perform well on a 5-feature set: 
CCNN=83.27% and KNN=78.52%. Therefore, feature selection will ultimately help in reducing 
computation time and also improve accuracy. Since enumerating all the combination of features is 
computational intractable, we used a greedy beam search in the later experiments on the 29 feature-set 
and another test image gallery. The search method gives us better accuracy. However, the greedy beam 
search is still computationally expensive when the feature dimension is very high. Other selection 
methods will be explored if many new features are added.  
 
We have initiated work on determining the effect of and solutions to training sets which contain 
images belonging to a “noise” or untrained class of particles. The inclusion of untrained-for images 
into the data set will undoubtedly have an affect on any classifier’s performance. Images from a trained 
class may be incorrectly classified as noise or conversely, noise images may be misclassified as 
plankton. Different architectures to handle non-planktons have been explored. Initially, hierarchical 
architecture classification was used. We did non-plankton classification (plankton vs. non-plankton) in 
a first stage and then plankton classification (with 5 type of test plankton) in a second stage. In recent 
experiments we used the plankton images, which included noise images, from one single sea 
deployment as a training set. We chose copepods, protoctista, doliolids, larvaceans, trichodesmium and 
non-planktons to classify because most of the identifiable images in one run appeared to be of these 
types. In our training set, we used 1000 images from each type of planktons and 5000 images from 
non-plankton. We used the complete 29 feature set in the experiments. Figure 2 shows the receiver 
operating curve (ROC) for non-plankton classification. The second stage 5-plankton classifier had 
82% accuracy. However, if we consider the loss of plankton in the first stage of non-plankton 
classification, the results were weaker. This is because the plankton images are of five types, and vary 
considerably in these real-world images, because of the three-dimensional nature of the particles; non-
plankton have been treated as a single class, which makes the problem difficult. Therefore, we 
switched to one stage initial classification, where we initially included the non-plankton with their 
most similar plankton class. This gave us from 81.6% to 88.4% overall accuracy (depending on the 
training set mixture) and from 80.9% to 78.9% corresponding accuracy for the 5-type of planktons by 
varying the number of the non-plankton in our training set (i.e., altering the bias for the non-plankton 
class). 
 

 
Figure 2- Receiver Operating Curve for non-plankton classification showing tradeoff between 

accuracy and false positive identification. 
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The SVM classification scheme performed very well, in terms of computation time for training and 
classification, and produced high accuracy (over 80% in our real-world test images). Using this 
algorithm, we have developed a pair of software applications that will enable shipboard training and 
classification. The input to the training application is a text-based file that defines the training images 
(their names and locations on a disk drive), and a variety of parameters (which features to use, number 
of images, kernel parameters). This allows maximum flexibility, which will be especially useful when 
new ecosystems are sampled. The application performs noise reduction, computes the selected 
features, and creates training models, which are saved to files for use by the classification application. 
The classification application extracts the features for each unclassified image in the source directory, 
and uses the training models to classify the image. The image is then moved to the appropriate class 
subdirectory within the destination directory.  
 
RESULTS 
 
Significant progress has been made toward producing a shipboard application for use in classification 
of marine plankton images. Twenty-nine features have been created and implemented, though for 
fastest computation time and highest accuracy, a reduced subset is preferred. Removing features has 
been shown to improve accuracy by several percentage points. For high speed, and only slightly 
reduced accuracy, the five best features can be chosen. Size, moment1, convex ratio, and transparency 
features are some of the most important features. The Support Vector Machine algorithm has had the 
best combination of computation speed and accuracy. The initial software for shipboard classification, 
using the SVM algorithm and full feature set, operating on a 2.0 GHz Pentium 4 desktop PC can 
extract features for and classify approximately 730 images per minute. This compares favorably to a 
human expert, who can sort approximately 1,000 images per hour. 
 
The introduction of noise images is a challenging aspect in the development of the software, and will 
need additional development, especially when operating nearshore, where significant amounts of 
detritus and sediment may be present in the water. The software should be flexible enough to allow 
tuning of the bias for including plankton and excluding noise.  
 
IMPACT/APPLICATIONS 
 
This project has the potential to reduce the turnaround time for evaluating plankton images from 
months to days. Being able to quickly image and sort particles in the marine environment offers the 
possibility to react to or predict changes in optical or chemical properties of the water resulting from 
these particles. In-situ imaging techniques have been shown to have a scientific benefit [8], especially 
when compared to net collection of fragile plankton. Consistency, speed, and lack of fatigue offered by 
computer processing versus human identification, and use by non-biologists are advantages to be seen 
by automated recognition. The software is being developed to be as generic as possible, to enable its 
use in a wide variety of marine ecosystems. Although the current approach uses SIPPER instrument 
images, the standard (bitmap) input format is amenable to other digital imaging systems that may be 
developed.  
 
TRANSITIONS 
 
The developed software will be used in the near-term to classify millions of available SIPPER images, 
which will help in measuring the distribution of plankton in the Gulf of Mexico. 
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RELATED PROJECTS 
 
The SIPPER imaging instrument is being refined and deployed under the ONR-sponsored 
“Development and Field Application of Laser Particle Imagers” grant (ONR: N00014-96-1-5020- 
Hopkins et. al.). The field-collected images are being made available for the current project, and the 
developed software will have a direct and immediate use in the aforementioned grant. The SIPPER 
web site is http://marine.usf.edu/sipper.  
  
We have met with Dr. Horst Bunke from the Institute of Computer Science and Applied Mathematics, 
University Bern, who has worked with consortium of universities on an EU-funded project (ADIAC) 
for the specific classification of diatom images.  
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