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LONG-TERM GOAL  
 
The long-term goals of this project are: 
  

(1) to develop a theoretical framework to quantify turbulence induced NPZ  interactions.  
 
(2) to apply the theory to develop parameterizations to be used in realistic environmental 

biodynamical coupling numerical models. 
 
OBJECTIVES 
 
Connect  the  Goodman and Robinson (2007) statistically based pdf theory to Advection Diffusion 
Reaction (ADR) modeling of NPZ interaction. 
 
APPROACH 
 
A nonlinear model for biological and physical dynamical interactions in a laminar flow field being 
upwelled  into the mixed layer Robinson(1999) (Fig 1, below)  has been extended to turbulent flow 
(Goodman and Robinson, 2007). The approach of the Goodman and Robinson theory has been to 
develop a probability density function (pdf) for the turbulent displacement field and use that to 
calculate the turbulence induced biological interaction (TIBI) terms, i.e. , ,i j i j i jPN PZ Z N< > < > < > , 
where are the i, ,i iN P Z

, ,i iuP< > <
r r

i

i >

th component of a field of different nutrients, phytoplankton, and zooplankton 
embedded in the turbulent field. Contrast the TIBI terms with the biological turbulent flux terms 

. The formalism for modeling the latter type of terms are well developed, 
typically involving some type of eddy diffusivity or higher order closure such as Mellor and Yamada, 
(1982).  However, at present, no biodynamical basis for closure of the TIBI terms has been developed. 
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The current approach to handling the TIBI terms is either: (1) to ignore them by setting  

 in an advection diffusion reaction (ADR) equation approach (Donaghay, 
and  Osborn , 1997),  or (2) to perform a numerical simulation for the turbulence displacement and 
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explicitly calculate the TIBI terms. The former, as we will show below, can typically result in a large 
overestimate of the effect of turbulence on these interactions, while the latter is very limited in its 
domain size, suffers from difficulty in imposing realistic boundary condition at the laminar turbulent 
interface, and can only reveal significant physics of the TIBI terms with a large number of repetitive 
runs, which prohibit the size of the computational domain to very limited environmental scenarios. In 
addition,  turbulence numerical  models such as LES and  DNS  are difficult to embed in larger 
regional scale biophysical coupling models. What is needed to be useful in the larger scale physical 
biological coupling models is development of a realistic parameterizations of the TIBI terms, 
analogously to the development of turbulent flux parameterizations used in regional and large scale 
ocean circulation models.  In addition development of such parameterizations will  lead to new 
physical/ biological insights into the role of the TIBI terms.  
 
WORK COMPLETED 
 
Since the beginning of this project, in order to develop parameterizations for the TIBI terms, we have 
been examining the relationship of the Goodman and Robinson pdf  theory approach to that of  the 
ensemble averaged ADR approach. We have made a major breakthrough and have obtained an exact 
solution to the ADR equation for realistic boundary conditions using the Goodman and Robinson pdf 
theory approach. With these results we are now in a position to formally examine various 
parameterizations of the TIBI terms.  Preliminary results indicate that for the single component bilinear 
NP interaction problem, the potential suitability of a linear parameterization. Below we outline the 
results to date. 
 
RESULTS 
 
Consider first the Advection Diffusion (AD) equation with no biological interaction. Let ρ̂  �be  some  
biological scalar  such the total biomass density being upwelled into a turbulent optically inactive mixed layer  ,   
with � ˆ P Nρ = +  �, where P, N are the phytoplankton and nutrient mass densities, respectively.  Using  the 
simple linear upwelling field of Goodman and Robinson (2007) (Fig.1) and, by symmetry, assuming that 

turbulent mixing is dominated by vertical (1D) fluxes ,  it is straightforward to show that ρ̂ satisfies the one 
dimensional AD equation  
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where the depth z is normalized by the mixed layer depth, D; uptake

upwellingT
α

Τ
=  is the  upwelling strain 

rate,
1

upwellingT
,normalized by  the nutrient uptake time, uptakeΤ  ;  2

uptake

D
κ

κ
Τ

=
%

, is the normalized turbulent 

diffusivity , , κ% 0ρ  is the biomass density being upwelling into the turbulent mixed layer, which is 
located at z <1.   Boundary condition (2a) ensures that no material is fluxed out of the mixed layer at 
the surface, while boundary condition (2b) ensures that mass flux is conserved at the bass of the mixed 
layer. It should be noted that in that the model pdf  discussed in Goodman and Robinson (2007) once a 
particle entered the mixed layer it is trapped in the mixed layer. This lead to a no flux boundary 

condition,
ˆ
z

0ρ∂
∂

=  ,  at the base of the mixed layer and resulted in a build up of the integrated primary 

production. Boundary condition (2b) is a more realistic characterization of the role of turbulence at the 
base of the mixed layer, i.e. transition zone of Fig1.  Eq. (1) with boundary conditions (2a) and 2b) can 
be solved exactly where it can be shown that  
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where , ,m mGγ  are eigenvalues and eigenfunctions solutions  of the equation  
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where Pe is the Peclet’ number defined by 

 Pe α
κ
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and measures the relative importance of advection to turbulent diffusion. The time parameter t0 is the initial time 
when turbulence is turned on. From the orthonormal property of eigenfunctions,  it is straightforward to show 
that 
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with the Heaviside function defined by 
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Eq (5) can be interpreted as the prescription for obtaining the average density ˆ  ρ ρ ρ≡ =< >  from the 

initial density 0 0( , ')H t tρ ρ=  using the probability density function pdf, F, namely 
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Consider phytoplankton of density, P, and Nutrients of density, N, being upwelling into a turbulent 
mixed layer. 
 
Let the interaction of P, N be a simple bilinear form 
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Using the pdf F we can write  
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Consider now the equation for from (9a) and (b). It follows that  
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which upon using in (10) and (11), noting that  N = 1-P ,and with some algebra yields the differential equation  
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Note that the first term on the RHS of (13) represents a source term at z =1 and thus P  can be cast in 
the exact same form as equations (1) and (2) or 
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 This proves that using equation (7) in (10) satisfies the ADR equation, (15) subject to boundary 
conditions (16a) and (16b), which is the same as (2a) and (2b).  
 
We are now in a position to use this rigorous approach to compare various parameterizations of the 
TIBI terms. Consider the bilinear NP interaction discussed above. The simplest parameterization is to 
take the relationship for induced turbulent TIBI term as ' '  P N CPN< > =  , which results in the RHS 
of (15) as 

 (1 )PN C PN< > = − . Note that the standard approach (Donaghay, and  Osborn , 1997) is to set C =0 . 

Table I below shows values of vertically integrated values of C, namely  for different 

values of α and Pe = 1, i.e. advection and turbulence, playing an equal role. Also shown are exact 
solutions for 

1

0
sC dz< > = ∫ C

sC< >  obtained with our new pdf theory, described above. Although it should be noted 
that we are not comparing the actual local values of C, i.e. C = C(z), the closness between theory and 
this parameterization approximation is very encouraging. Note as α increases the uptake time increases 
relative to the advection time and turbulence plays a decreasing role in TIBI interaction. Conversely  
 
for small α and small uptake time relative to the advection time the role of turbulence on the TIBI term 
increases. 
 
 

x 
Figure 1. Upwelling flow field into an optically and biologically active mixed layer used in the 

Goodman and Robinson (2007) biodynamical  model. Note as ��increases or as the uptake time 
increases relative to the advection time 

 
Table 1. 
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PN
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> for Pe =1 and difference values of α,  

 
IMPACT/APPLICATION 
 
This work forms the basis for a new class of subgrid scale biodynamcial interaction for input into 
regional and circulariuon models.  
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