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LONG-TERM GOALS   
 
The long term goals of this research are to develop practical and efficient algorithms for application to 
the nonlinear inversion problems encountered in ocean acoustics. Such algorithms would be used for 
estimating or accounting for the effects of the environment on acoustic propagation, detection and 
tracking in shallow water. 
 
OBJECTIVES    
 
The specific objectives of this research are to examine the sources of the nonlinearities, for acoustic 
inversion of shallow water environmental properties, and to assess their mitigation by means of a 
singular value decomposition of the model Jacobian matrix. 
 
APPROACH  
 
Many inverse problems of interest in ocean acoustics are intrinsically nonlinear, e.g. inverting 
measured pressure data for bottom and scattering properties. The solution to the nonlinear inversion 
problem is usually approached in one of two ways. The first way is to assume a starting model, which 
one hopes is near to the true model, then recursively solve a linearized version of the inverse problem 
for corrections to the starting model and model covariance. The advantage of this approach is that the 
numerical implementation of the solution algorithm is relatively straightforward, and in a linear 
problem the statistical properties are well defined and will remain gaussian if they start out gaussian. 
However linearization of a nonlinear system can produce biased estimates for two reasons: 1. 
Linearization of the system and/or measurement equations may not be a good approximation, and 2. 
Nonlinear systems do not maintain gaussian statistics as they evolve even if they are initially gaussian. 
Another problem with linearizing a nonlinear system is that with a poor starting guess the solution 
algorithm may never converge to the true answer. If the starting model represents a point near a local 
minimum of the solution space, the final solution will be trapped in that local minimum, and never 
converge to the true answer. This can be circumvented by using Monte Carlo techniques to randomly 
sample the solution space for starting models. 
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The other class of solution methods attack the nonlinear problem directly by using simulated 
annealing or genetic algorithms. The disadvantage of these directly nonlinear methods, is that there is 
no way to conveniently propagate the statistical properties of the solution through to the final result. 
One solution to this problem is to find the global minimum in the solution space, if one exists, then 
linearize about the solution representing the global minimum and do a statistical analysis about that 
solution. This was done by Potty et al.(2000), who employed a genetic algorithm followed by linear 
analysis about the solution determined by the genetic algorithm. 
 
In any case, a careful analysis of the linear problem leads to insight into the larger structure of the 
problem. One approach is to employ singular value decomposition (SVD) to make a first estimate of 
how much information is in and can be extracted from the data. 
 
WORK COMPLETED  
 
This project terminated in early calendar year 2010, and focused on the estimation of seafloor 
geoacoustic properties as a (possibly piece-wise) function of depth from pressure timeseries on an 
array of receivers in the water.  The idea is to allow the data to fully specify the structure of the 
bottom, including smooth variation between discontinuities due to layering, rather than arbitrarily 
impose the assumption of a few homogeneous layers.  An iterative linearization approach to the 
inversion of travel times is commonly used for geophysical and acoustic problems, but examples in the 
literature (Menke, 1989; Potty, 2000) show that for some seismoacoustic problems, fullwave inversion 
of the pressure timeseries itself can succeed with a higher-resolution result if the initial estimate is 
close enough to the solution point.  In this work we have been exploring the use of linearized 
continuous fullwave inversion for the geoacoustic problem, examining for this application ways to 
learn the locations of discontinuities to implement in the regularization.  We also have been studying 
whether the initial estimate can be realistically “distant” from the solution, and if not, whether an initial 
travel time inversion or signal-envelope inversion can provide a close enough initial estimate. 
 
RESULTS 
 
Figure 1 shows an analysis of the problem via singular value decomposition (SVD) of a Jacobian 
matrix of derivatives, those of the acoustic pressure timeseries on receivers of an ocean surface HLA 
array with respect to a P-wave velocity profile.  The source (pulsed 100Hz signal with a 50Hz 
bandwidth) is located at the surface as well.  For the sake of analysis, receivers in the HLA are every 
50m from 50m to 2km in range from the source, and the 200m deep ocean is isovelocity at 1500m/s.  
The seafloor being estimated is parameterized down to 300m.  The scenario is that we begin from an 
initial estimate of the bottom profile, in this case the constant gradient one shown in the dashed line in 
the lower left plot of Figure 1.  The data in this synthetic problem was produced from the more 
complicated profile with discontinuities, the solid line in that same plot.    
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Figure 1: Upper left are the singular values, which cover only a few orders of magnitude.  Upper 
right are the singular vectors. Lower left is the actual velocity model, showing smoother structure 

between two well defined discontinuities. The lower right shows the model perturbations as 
information from successive singular vectors is added. Notice the location of the first  

discontimuity at 150m and a hint of the second one at 250m. 
 
This "measured" data is the only place in the problem where this more complicated profile with 
discontinuities incorporated is used.  The problem is locally linearized at the initial estimate to solve 
for a perturbation to update the model profile.  The SVD analysis is based on the relationship between 
model perturbations and data residuals as the problem attempts to step from the smooth model profile 



4 

to the complicated one. The Jacobian matrix from the local linearization is decomposed into singular 
values and vectors to produce the results in this figure. 
 
At upper left in Figure 1, note the singular values cover only a few orders of magnitude.  However, the 
problem still requires regularization to avoid fitting structure in the data that is just noise.  The set of 
singular vectors is in the upper right plot.  The singular vectors corresponding to the largest singular 
values have the most structure right near the seafloor surface, and with more singular vectors then 
deeper structure is resolved.  The singular vectors corresponding to the smaller singular values lose 
their meaning (and their structure in this plot), for the derivatives matrix was computed by a finite 
difference method that was limited in its accuracy.  The plot at lower right in Figure 1 shows the 
solution for the model perturbation at different levels of regularization, by cumulatively including each 
additional singular vector.  A given column of this plot is a choice of model perturbation to step from 
the smooth bottom profile in the lower left plot to the rough one that includes the discontinuities.  With 
just the first few singular vectors included, one sees the strong response at the surface, just as in the 
singular vector plot above; similarly, more structure is resolved at depth with more singular values 
included.  The 150m discontinuity is especially well resolved, and hints of the 250m one can be seen 
with the higher-numbered singular vectors.  The information about the location of the discontinuities 
comes only from the "measured" data.  The reflections seen in the data time-series at particular arrival 
times are conveniently mapped by means of the derivatives into perturbations at their corresponding 
depths.  Lastly, as in the singular vectors plot, there is a region corresponding to the smallest singular 
values at which we run into the limits of the accuracy of the derivatives matrix which was computed by 
finite differences. 
 
IMPACT/APPLICATIONS 
 
This SVD based analysis is useful to gain understanding about the problem and to identify locations of 
the discontinuities, but ultimately the SVD approach did not fare well as the regularization type for the 
iterated inverse problem.  Instead, minimizing a norm not of the model size (as in the SVD approach) 
but of the model smoothness, one solves for the model profile with the fewest features that matches the 
measured data to within the noise.  The discontinuity locations must be specified to this problem - as 
taken, for example, from the SVD based analysis which mapped them from the reflection arrival times. 
But with this approach one can begin to distinguish when there is enough information in the data to 
resolve smooth variations in the model between discontinuities, for if there is not, one obtains straight 
lines between the discontinuities, either isovelocity or constant gradient.  In the worse case, one obtains 
a solution with just a few homogeneous layers, just as one might have formulated the problem in a 
simpler way.  But in better cases, this approach allows one to resolve smooth variations in the model 
between the stronger discontinuities, gaining more information from the same data. 
 
RELATED PROJECTS    
 
Our research is directly related to other programs studying effects of uncertainty in the environment, 
measurements, and models on acoustic propagation, and target detection and characterization.  
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