
1 
 

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 
 
 

Shallow Water Propagation 
 

William L. Siegmann 
Rensselaer Polytechnic Institute  

110 Eighth Street 
Jonsson-Rowland Science Center 1C08 

Troy, New York 12180-3590 
phone: (518) 276-6905   fax: (518) 276-2825   email: siegmw@rpi.edu  

 
Adam M. Metzler 

Rensselaer doctoral student 
 

Kara G. McMahon 
Rensselaer doctoral student 

 
Award Numbers: N000140410016 

N000140810972 (Ocean Acoustics Graduate Traineeship)  
N000140910638 (Ocean Acoustics Graduate Traineeship) 

http://www.math.rpi.edu/www/ocean_acoustics  
 
 

LONG-TERM GOALS  
 
Develop methods for deterministic and stochastic acoustic calculations in complex shallow water 
environments, specify their capabilities and accuracy, and apply them to understand experimental data 
and physical mechanisms of propagation. 
 
OBJECTIVES    
 
(A) Treat propagation from narrowband and broadband sources over elastic and poro-elastic sediments, 

and incorporate realistic bathymetric, topographic, and geoacoustic variations. 
 
(B) Quantify acoustic interactions with physical features in the ocean volume and with geoacoustic 

features of the ocean sediment, and analyze and interpret experimental data.  
 
APPROACH      
 
(A) Develop efficient and accurate parabolic equation (PE) techniques for propagation through 

heterogeneous sediments.  Treat range dependence and sediment layering by single scattering and 
energy conservation methods.   Benchmark results using data and special high-accuracy solutions. 

 
(B) Construct representations for ocean environmental and geoacoustic variability using data and 

parametric models.  Determine acoustic fields with PE, normal mode, and approximation methods.   
Use experimental data and computational results to assess propagation mechanisms.   
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• Principal collaborators are: Rensselaer graduate students and recent graduates; Dr. Michael 
Collins (NRL), for model development; and Profs. William Carey and Allan Pierce (BU), and 
Drs. James Lynch and Timothy Duda (WHOI), for theoretical interpretations and data analysis.  

 
WORK COMPLETED      
 
(A) 
 

Propagation model development 

(1) Accurate calculations for range-dependent elastic sediments 
 
• A single-scattering approximation combined with a coordinate rotation technique handles 

ocean seismo-acoustic problems with range-dependent bathymetry, variable thickness sediment 
layers, and topographic variations for beach, island, and coastal problems [1]. 

• Accuracy of the new PE method is confirmed by comparisons [2] with high fidelity data from 
propagation over an elastic slab with variable bottom slopes in a large NRL tank.   

• Accuracy is also verified by comparing with benchmarks for problems with large changes in 
sound speeds and with waves on range-dependent elastic interfaces [3], and guidelines for 
selection of computational parameters are determined.   

(2) New capabilities for range-dependent elastic sediments 
 

• Generalization of the PE method permits treatment of range-dependent transversely isotropic 
elastic sediments [4] which occur in many coastal regions, and examples of anisotropic effects 
on propagation are provided.   

• Reformulation of the propagation variables produces a new method [5] with the potential of 
treating range dependent bathymetry and elastic interfaces more efficiently, and at least as 
accurately, as the best currently available methods. 

(3) Accurate calculations for range-dependent poro-elastic sediments 
 
• The first propagation model able to handle weak range dependence in transversely isotropic 

poro-elastic sediments [6] shows the feasibility of PE approaches.  

• Recent progress for range-dependent elastic sediments is extended to poro-elastic sediments 
[7], by employing the same propagation variables and computational techniques as in [3]. 

• A new method for poro-elastic media is constructed [8], based on the variable reformulation in 
[5], to treat range dependence efficiently and accurately, and initial benchmarking of the 
implementation is demonstrated.  

 
(B) 
 

Propagation mechanism assessment 

(1) Nonlinear internal wave propagation effects 
 

• In the presence of nonlinear internal wave fronts, acoustic modes may propagate adiabatically 
and interact at small incident angles with the fronts to form horizontal Lloyd mirror 
interference patterns [9], which are particularly interesting when the fronts are curved.     
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• To improve specification of acoustic effects from nonlinear internal waves, feature parameters 
are estimated from satellite SAR images [10], with accuracy tested by comparisons with 
ground truth mooring data.   

• Fully three-dimensional propagation calculations show that horizontal mode coupling may 
arise from two or more interacting nonlinear internal waves [11], depending on their 
amplitudes, orientations, and coherence lengths.   

• A scattering formalism, based on a limit of discrete scattering events and a modal transport 
theory, provides an alternative description of intensity variations in a nonlinear internal wave 
duct [12], and is compared with the standard refractive treatment.  

(2) Modal attenuation coefficient variability 
 

• Nonlinear frequency dependence of sediment attenuation has substantial effects that can be 
physically interpreted by using a parametric description for a Perkeris waveguide and 
examining the frequency behavior of modal attenuation coefficients [13].   

• Attenuation coefficients obtained from a normal mode approach agree well with earlier 
estimates found from Gulf of Mexico data [14], after identifying and using an appropriate 
subset of measured sound speed profiles.   

• Nonlinear frequency dependence in sediment attenuation and thermocline-type water sound 
speed profiles can produce significant sensitivity in the frequency dependence of modal 
attenuation coefficients [15].   

• New asymptotic approximations for modes are used to show that the location and strength of 
sound speed gradients in the water column have significantly different effects on the 
parametric dependence of modal attenuation coefficients [16].     

(3) Transmission loss dependence on intrinsic sediment attenuation 
 

• The connection between the frequency dependence of modal attenuation coefficients and an 
overall linear attenuation of averaged reduced transmission loss is quantified [17] by showing 
the primary dependence on water sound speed profile features.  

• Nonlinear frequency dependence of intrinsic sediment attenuation behavior is necessary [18] 
for good agreement between New Jersey AGS data and broadband intensity calculated with 
variations due to geoacoustic uncertainties.   

• Efficient methods are developed for recent experimental sites, to find relationships between the 
frequency power law of intrinsic attenuation, modal attenuation coefficients, and averaged 
transmission loss [19], in order to assess the robustness of earlier power law estimates.   

• Relatively simple formulas for averaged transmission loss in range-independent waveguides 
are derived from mode theory, and they reduce to results of Rogers and others for high 
frequencies and isospeed or constant gradient water sound speed profiles [20].   

(4) Consequences of the cardhouse theory of mud 
 

• The electric charge on bubbles is an important feature of this model, and under simplified 
uniform conditions the charged bubbles are not spherical [21], which is in accord with 
experimental observations. 
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• In this theory mud platelets are hypothesized to behave like electrical quadrupoles, and an 
estimate of shear wave speed is obtained by computing the oscillation frequency of a hinged 
joint formed by platelets which interact end to side [22].   

 
RESULTS (from two selected investigations)     
 
(A) Acoustic data analysis and other applications need capabilities for efficient and accurate 

propagation calculations in shallow water waveguides with range-dependent elastic sediments 
and interfaces.  Sediment elasticity is important because energy transfer between compressional 
and shear modes may substantially modify acoustic intensity and phase.  In addition, handling 
elasticity effectively is vital for producing extensions to poro-elastic, anisotropic, and other 
complex sediments.  A key physical and computational issue is that energy spectra for elastic 
sediments extend over more wave numbers than for fluid sediment models.  Our current PE 
method [1] developed from a series of advances, including formulation with non-standard 
dependent variables, employing coordinate rotations at range locations of bathymetry slope 
changes, using single- scattering corrections at stair-step approximations of changes in sediment 
interfaces and volume parameters, and incorporating a procedure to handle relatively large 
changes at stair steps.   Benchmarking provides essential validation throughout the development, 
and one paper [2] shows applications to high quality data obtained from an NRL experimental 
series using elastic slabs.  Additional calculations [3] show excellent agreement with benchmarks 
for problems with relatively large changes in sound speeds and with range-dependent interface 
waves.  An important extension [4] is to range-dependent transversely isotropic (TI) elastic 
sediments which occur in coastal and shallow regions.  Figure 1 illustrates the accuracy and 
capability of our method for treating such sediments.  Fig. 1(a) shows an accurate benchmark for 
reduced transmission loss in a range-dependent TI waveguide problem, and the corresponding 
picture (omitted) from the method is nearly identical. For example, Fig. 1(b) shows strong 
agreement between the benchmark and implementation calculations for reduced transmission loss 
on tracks 100 m below the upper interface.   Next, two range-independent waveguides are 
examined, with an isotropic elastic layer over an elastic bottom that is either TI or “effective” 
isotropic (EI).   The latter has isotropic sound speed values which best model TI layers.  Figs. 
1(c) and 1(d) are horizontal wave number spectra and transmission loss for a source near, and a 
receiver well above, the interface.  Depending as usual on the accuracy level sought, the EI 
model acceptably represents the results from the TI sediment in this case.  Figs. 1(e) and 1(f) are 
corresponding results for both source and receiver near the interface.  The EI sediment does not 
acceptably model all features of the TI sediment, and consequently sediment anisotropy may 
need to be included rather than neglected or “averaged out”.  We conclude from these and other 
results that our new propagation method provides essential capabilities for efficient and accurate 
calculations in waveguides with range variations in bathymetry, topography, and elastic sediment 
structure, anisotropy, and layering. 

 
(B) Nonlinear internal waves (NIWs), which are common in shallow water, cause significant 

variations in acoustic field amplitude and phase.  Experiments from SWARM through SW06 
show the strength and variety of such variations, and valuable modeling has been accomplished.   
Issues still remain, for example concerning assimilation of different types of NIW observations 
into environmental acoustics models, in order to take advantage of all available data and to 
improve NIW parameter estimates [10].  Another example is specifying when acoustic modes 
propagate through NIWs with and without cross-range mode coupling [11].   Our interest is also 
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in the interference patterns that develop as acoustic modes propagate coherently near a NIW 
front.  This mechanism has been identified by our WHOI colleagues as a horizontal Lloyd mirror 
(HLM), because of the direct analogy with the traditional Lloyd mirror pattern near the sea 
surface.   The clearest example occurs when a single mode propagates adiabatically, to produce a 
HLM pattern with little or no acoustic penetration across the front and with “refraction” that is 
well modeled by “reflection” below critical angle.   Previous treatments for essentially straight 
fronts show an expected dependence on source-receiver geometry.  Of particular interest are 
trains of NIWs and those for which curvature is not negligible [9], as is typical in the ocean.  
With curvature the most direct solution approach uses Huygen’s Principle.  Examples are shown 
in Figure 2, which displays reduced transmission loss contours for a sound-speed jump 
approximation of a circular NIW front.  In Fig. 2(a) a front with large radius of curvature R 
produces a HLM pattern much like that from a straight front, with the dashed line and the front 
bounding a region of strong beams.  With R smaller as in Fig. 2(b), the region of strong pattern 
decreases along with the beam spacing.  For R = 70 km in Fig. 2(c), the changes accelerate so 
that the distant region with some cross-front transmission becomes visible.  When R decreases to 
50 km in Fig. 2(d), transmission occurs across the front almost everywhere since reflection 
angles are above critical, and the narrow HLM beams have weaker contrasts.  We conclude from 
these and other calculations that horizontal Lloyd mirror interference patterns have significant 
variations not only with source-receiver geometry, but also with front shape and structure 
parameters and the number of NIWs in the train.  An open question is whether these patterns and 
variations appear in experimental observations. 

 

                   
(a) (b) 

 
Figure 1.  Accurate modeling of propagation in transversely isotropic (TI) elastic sediments is 
obtained from the single-scattering parabolic equation.  Fig. (a):  Color contours of reduced 

transmission loss between 15 and 55 dB (re: 1 m) over 5 km range for a benchmark environment, 
consisting of a TI elastic waveguide of 400 m thickness, ρ = 1.5 gm/cm3, and an upward slope 1.15°, 

which is sandwiched between two thick, high-density, isotropic elastic layers.  The waveguide has 
anisotropic sound speed differences of δcp = 150 m/s and δcs = 25 m/s, with a 10 Hz source 100 m 
below the upper interface. Contours for the benchmark and the range-dependent PE calculation 

(not shown) are almost identical.  Fig. (b): Corresponding reduced (10logr removed) transmission 
loss curves on a track 100 m below the upper interface.  The black curve is the benchmark solution, 
and the red curve is calculated by the range-dependent single scattering method.  The agreement is 

excellent and shows an oscillatory pattern with about 250 m wavelength beyond 2 km. 
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                                    (c)                                                                                        (d)  

             
   (e)                                                                                         (f) 

 
 

Figure 1. Fig. (c)-(f): Two range-independent elastic waveguides are compared, both having an 
isotropic upper layer of thickness 300 m, cp = 1700 m/s, and cs = 850 m/s,  with a 25 Hz source 

located 5 m above the bottom interface.  One waveguide (red curves) has a TI elastic bottom layer 
with δcp = 150 m/s and δcs = 100 m/s. The other (blue curves) has an “effective” isotropic (EI) 

elastic bottom  with both compressional and shear wave speeds at their maxima in the TI layer, since 
such values give the best overall correspondence with TI cases.  Fig. (c) compares horizontal wave 
number spectra between 0.04 and 0.10 /m, normalized with maximum-peak amplitude one, at 25 m 

depth. The next three largest TI cp-wave peaks are underestimated by the EI peaks.  Fig. (d) has 
corresponding transmission loss curves between 20 and 80 dB (re: 1 m) over 5 km range at 25 m 

depth.  The agreement is acceptable before 2 km and deteriorates beyond.  Fig. (e) compares spectra 
between 0.12 and 0.18 /m at 299 m depth, just above the interface.  The TI curve shows an interface 
wave peak which is missing in the EI curve.   Fig. (f)

  

 has corresponding transmission loss curves at 
299 m, with acceptable agreement before 1 km and usually worse beyond.  The single scattering TI 
propagation model has benchmark-comparable accuracy and demonstrates that anisotropic effects 

cannot generally be neglected for high fidelity propagation calculations.     
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Figure 2.   Acoustic modes interacting with nonlinear internal wave fronts at small incident angles 
may form horizontal Lloyd mirror (HLM) interference patterns that are particularly clear for single 
modes propagating adiabatically.  Color contours of reduced transmission loss are referenced to the 

direct arrival contribution, so that a 10 dB dynamic range can display the pattern  in a horizontal 
plane with range from 0 to 15 km and cross-range from -400 to 1400 m.  A 55 Hz source is located 

at the origin, and the front is modeled as a sound speed jump of 12 m/s, which if it were straight 
would lie along cross-range -400 m.  Results are shown for a circular wave front, with radius of 

curvature R and symmetry about the cross-range axis.  A front is indicated by solid white lines, and 
dashed white lines demarcate regions of strong HLM patterns where the front reflection coefficient 

has magnitude one.  Fig. 2(a) with R = 500 km shows a strong HLM pattern where total internal 
reflection occurs, for ranges beyond 3 km and for an increasing spread of cross-range values with 
range.  Fig. 2(b) with R = 100 km has a smaller region, beyond 5 km, of strong HLM patterns with 
narrower beam spacing.  Fig. 2(c) with increasing curvature R = 70 km continues the trends, with 
the appearance of the region beyond 10 km where total internal reflection no longer occurs.  The 

region of strong HLM patterns is bounded by two dashed lines and a portion of the front curve, and 
transmission across the front can be seen for both smaller and larger ranges.  Fig. 2(d) with R = 50 
km shows no region of strong HLM patterns and transmission almost everywhere across the front.  
Nonlinear internal wave front curvature, along with other parameters, can have important effects 

on HLM interference patterns. 
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IMPACT/APPLICATIONS 
  
New or enhanced capabilities for handling physical properties of shallow water sediments, including 
layering, elasticity, porosity, and anisotropy, are provided for propagation predictions.  Range-
dependent variability from bathymetry, topography, and sediment layer interfaces in propagation 
calculations can be treated.   Intensity attenuation and coherence statistics that result from 
environmental fluctuations and experimental variability can be found efficiently.   Data analyses and 
comparisons permit specification, for experimental and application purposes, of the relative 
significance of key physical mechanisms:  linear versus nonlinear frequency dependence of sediment 
attenuation, sediment heterogeneity versus homogeneity, water column versus bathymetric variability, 
water column scattering versus refraction, and vertical versus horizontal mode coupling due to internal 
solitons and bathymetry.  Results from modeling and data analyses of experiments, including New 
Jersey Shelf experiments and the ACT series, are partly aimed toward improving shallow water sonar 
systems and predictions.  Propagation model implementations, analysis tools, and data representation 
techniques are distributed to university, laboratory, and research and development groups. 
 
RELATED PROJECTS      
 
• Continuing projects with Dr. Michael Collins [3]-[8] also include a monograph on state of the art 

parabolic wave equation models and applications [23], for which principal research results are 
nearly complete and chapter drafts are prepared. 

 
• Investigations with Drs. James Lynch and Timothy Duda and their colleagues [9]-[12] are directed 

toward propagation effects from waveguides and anti-waveguides of variable structure generated 
by nonlinear internal waves.   

 
• Research with Profs. William Carey and Allan Pierce [13]-[17], [19]-[22] focuses on propagation 

variability from sediment geoacoustic structure and attenuation, and on modeling seabed properties 
using their theory for mud structure (future support for PhD student J. O. Fayton from the SMART 
Scholarship Program). 
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