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LONG-TERM GOALS 

The overall project goal has been to test the feasibility and practicality of Bayesian Hierarchical Model 
(BHM) methods in aspects of the Mediterranean Forecast System (MFS); an operational ocean data 
assimilation and forecast system. 

OBJECTIVES 

Three main objectives have been pursued in support of the project goal. They are: 

1. a surface wind BHM (MFS-Wind-BHM) to drive ensemble ocean data assimilation and forecasts 
in MFS; 
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2. a time- and depth-dependent background error covariance BHM (MFS-Error-BHM) to evolve the 
background error covariance matrix in 13 sub-regions of the MFS forecast domain; and 

3. a BHM to demonstrate super-ensemble forecast capabilities (MFS-SuperEnsemble-BHM) for 
ocean applications. 

APPROACH 

MFS-Wind-BHM 

The wind-driven component of the circulation comprises the major part of the total circulation in the 
Mediterranean Sea on the 10-day timescales of the MFS operational forecasts. MFS-Wind-BHM is 
designed to perturb the surface wind forcing for data assimilation and forecast steps of the MFS ocean 
forecast cycle as a means of generating an ocean ensemble forecast. The surface wind perturbations are 
constrained to be within the uncertainties prescribed in data stage and process model distributions. Data 
stage distributions are constructed from measurement error models for the QuikSCAT surface wind 
retrievals and from analysis-forecast error statistics for the ECMWF surface wind fields. The process 
model distribution is based on the leading order terms of the Rayleigh Friction Equations (RFE; Stevens 
et al., 2002). The purturbations are drawn from the posterior distribution of the MFS-Wind-BHM model 
for the 14-day sequential data assimilation step leading to ensemble ocean initial conditions, and for the 
10-day forecast step generating the ensemble forecast. Ten member ensembles are used in the pilot 
experiments. Initial condition and forecast posterior mean fields have been described in previous 
reports. Initial condition and forecast uncertainty are quantified by the spread in the ensemble fields for 
the ocean state. 

MFS-Error-BHM 

The approach, recent work completed, and results for the latest implementation of MFS-Error-BHM are 
presented in the FY2010 annual report for the ONR Physical Oceanography Program BRC project, 
“Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and 
Forecasts”, (Berliner, Wikle, Milliff; co-PIs). We review the salient points in abbreviated sections here 
and refer the reader to that report for more detailed discussion and figures. 

In general, the dimension of the full state (n × n) error covariance matrix Σt is reduced by expanding in 
a set of n × p basis functions Φ (e.g. EOFs, where n >> p) as 

Σt = ΦBt Φ
� 

where the time dependent background error covariance matrix of interest is Bt of dimension p × p. This 
matrix is not, in general, diagonal since the amplitudes of the basis functions are allowed to change with 
time. 

We define an error process model as et = Zβ t + ηt where Z are vertical basis functions based on 
multivariate (i.e. T and S) profiles, the β t are time-dependent amplitudes and ηt is a zero-mean 
Gaussian error term to account for additional uncertainty that is introduced e.g. in the dimension 
reduction. 

The key assumption is that β t is Gaussian, with zero mean and variance given by Bt from above. We 
use a modified Cholesky decomposition (Chen and Dunson, 2003) to write 

Bt = Λt Γt Γ
� 
t Λt 
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where Λt is a diagonal matrix with elements proportional to the standard deviations of the elements of 
β t , and Γt is a lower triangular matrix associated with correlations among the β t . 

At the next level of the Bayesian hierarchy, we model the Λt and Γt as autoregressive time series, where 
the autoregression parameter distributions are specified at still lower levels of the BHM. 

Data stage distributions are built from misfit dt and anomaly qt datasets from MFS forecasts. The model 
misfits are forecast differences with respect to in-situ observations. The anomalies are departures from 
the model “year minus day” climatologies. These vectors can be written 

obsdt = Ht (Xt|t−1) − xt (1) 
qt = Xt|t−1 − x̄

obswhere Ht is the operator that moves the forecast Xt|t−1 to the observation x locations for comparison, t 
and X̄t is the climatology value for the model state variable X . 

MFS-SuperEnsemble-BHM 

Super-ensembles of ocean forecasts in the Mediterranean Sea can be constructed to quantify a 
multi-model posterior distribution and model biases for target ocean processes. Combining ensembles 
from several models is a challenging problem since the models may have different biases, variabilities 
and skills. Adjusting for these characteristics and managing uncertainty are keys. The Bayesian strategy 
suggested in Berliner and Kim (2008) offers a method that can treat these issues. In this approach 
ensembles are processed much like observational data and combined with a prior probability 
distribution for the state variables of interest. 

MFS-SuperEnsemble-BHM is our implementation of the Berliner and Kim (2008) methodology for 
temperature and salinity profile evolution (e.g. T (z, t) and S(z, t)) at two locations in the Rhodes Gyre 
region of the eastern Mediterranean. The periods of interest span February-March for the years 
2006-2009. 

We have assembled ensembles from three models: NEMO, OPA, and MedROMS. Each model has been 
forced by 10 realizations from MFS-Wind-BHM, as well as by the ECMWF analysis winds for the 
periods of interest. A total of 33 realizations serve as our data stage inputs. The MFS analysis fields, 
version SYS3a2, are used to formulate the MFS-SuperEnsemble-BHM prior (or process model stage 
distribution). 

Two approaches are used to analyze the SYS3a2 output to form a prior: 

(1) simple, data analytic summaries of state variable means and covariances serve as estimates of
 
prior means and covariances; and
 

(2) a stochastic time series model (specifically, a multivariate autoregressive model including
 
parameters for two temporal lags) is fit to the MedROMS output and then used as the prior.
 

WORK COMPLETED 

MFS-Wind-BHM 

Two manuscripts (Milliff et al., 2010; and Bonazzi et al., 2010) have been submitted, reviewed, and 
revised for publication in the Quarterly Journal of the Royal Meteorological Society. In part 1 (Milliff 
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et al., 2010) the theory and implementation of MFS-Wind-BHM is described in detail. An appendix 
includes the term-by-term definitions of the probability distributions that arise at each level of the model 
hierarchy. In part 2 (Bonazzi et al., 2010), the impact of the ensemble forecast methodology based on 
MFS-Wind-BHM perturbations is documented. Forecast uncertainty is concentrated at the ocean 
mesoscale; it is shown to be time and location dependent. 

MFS-Error-BHM 

Wikle has been computing Bt based on misfit and anomaly data stages for the period January-May 
2007, for the MFS sub-region in the Gulf of Lions. Wikle supplies vertical EOFs (Z) and Bt to Dr. 
Srdjan Dobricic at MFS, who then runs twin hindcast experiments with the operational error covariance 
and the Bt from MFS-Error-BHM for this period. Until now, there have been “order-of-magnitude” 
differences in the computed error covariances between the two methods. 

During the summer visit by Prof. Nadia Pinardi to NWRA/CoRA it was finally determined that the 
regional seasonal cycle removal procedure at MFS is specific and should be implemented in 
MFS-Error-BHM as well. Preliminary experiments using only anomaly (qt ) data stage inputs 
demonstrate that following the MFS pre-processing removes the discrepancy. Figures in the ONR 
annual report for “Characterizing Model Error” (see Related Projects) demonstrate that, even in the 
absence of dt data stage inputs, the forecast impact of MFS-Error-BHM is neutral. Experiments are 
underway now to introduce dt back into the MFS-Error-BHM and quantify forecast impacts at MFS. 

MFS-SuperEnsemble-BHM 

We have assembled all needed datasets and completed algorithmic development. Archetypal numerical 
codes have been developed, run, and assessed for effectiveness. Currently, those codes are being scaled 
up to the multivariate setting of our S(z, t) and T (z, t) datasets. We have designed experiments to 
exemplify and assess the method, including the role of the prior and processing the Bayesian output for 
forecasting purposes as well as model assessment (i.e., estimates of biases). 

A major paper presenting the results will be completed and submitted in December, 2010. 

While the code development for MFS-SuperEnsemble has been underway, further MedROMS 
development and validation have been undertaken by Di Lorenzo and colleagues at Georgia Tech. A 
MedROMS ensemble integration (whole basin, 3 members so far) spanning the period 1963-2009 has 
been produced using monthly ECMWF forcing. 

With Dr. Hazem Nagy, Di Lorenzo has produced an early draft of a paper on the climate variability of 
the Mediterranean eastern basin circulation. The ensemble mean reproduces quite well the satellite data 
in the period after 1990. The climate simulations also capture the upper circulation inversion that 
occurred in the Ionian sea in the 1990s. Di Lorenzo et al. are able to show that these inversions have 
occurred in the past on multi-decadal timescales. These mutli-decadal fluctuations associated with the 
upper ocean inversion of the Ionian circulation are captured in the first mode of sea-surface height 
anomaly variability in the individual realizations and in the ensemble mean. Di Lorenzo et al have also 
isolated an atmospheric bridge from the Pacific to the Mediterranean Sea in their analyses. It appears 
that the second mode of variability in the eastern basin circulation integrates the effects of interannual 
tropical Pacific variability; so much so that the principal component of the eastern basin circulation 
mode reproduces indices of Pacific climate (i.e. ENSO and PDO) with correlation R = 0.86. The 
Georgia Tech group is exploring mechanisms and implications for the deeper circulation and on deep 
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water formation in the Mediterranean. Interestingly, the effect of the NAO does not appear to dominate 
in the eastern basin. 

While the MedROMS climate-scale research is not a task directly associated with any of the MFS BHM 
objectives, it does demonstrate model stability and utility in this newest component of the 
MFS-SuperEnsemble-BHM data stage inputs. As noted, a climate-scale manuscript is in preparation 
and ONR funding will be acknowledged. 

Relevant Presentations 

(Berliner, Milliff, Pinardi, Wikle) Informal presentations and discussions at the annual “All-Hands” 
project meeting at NWRA/CoRA, August, 2010. 

(Milliff, Wikle; session co-conveners) Probabilistic Models in Ocean Sciences: Applications in Data 
Assimilation, Coupled Ecosystem Models and Air-Sea Interaction Studies, American Geophysical 
Union, Ocean Sciences Meeting, Portland, OR, February, 2010. 

(Berliner) Combining Models and Data: The Bayesian Approach to Modeling and Prediction, Invited 
Talk, AGU Ocean Sciences Meeting, Portland, OR, February, 2010. 

(Pinardi) A new method for ocean ensemble forecasting with quantification of wind uncertainties. 
Invited talk. AGU Ocean Sciences Meeting, Portland, OR, February, 2010. 

(Milliff, Pinardi, Wikle, Berliner, Bonazzi) Process model considerations for a surface wind Bayesian 
hierarchical model. Poster, AGU Ocean Sciences Meeting, Portland, OR, February 2010. 

(Milliff) Estimating semivariograms to build covariance matrices for J. Workshop on the ROMS 4D-Var 
Data Assimilation Systems for Advanced ROMS Users, University of California, Santa Cruz, July 2010. 

(Wikle) A hierarchical approach to motivate spatio-temporal statistical models. Institute for Pure and 
Applied Mathematics (IPAM), UCLA, Los Angeles, CA, May 25, 2010. 

(Wikle) Bayesian hierarchical models to augment the Mediterranean forecast system. Invited talk. Iowa 
State University. Ames, IA, October 15, 2009. 

(Wikle) Don’t forget the process! Using scientific process knowledge to motivate spatio-temporal 
models. Invited talk. SAMSI Program on Space-Time Analysis for Environmental Mapping, 
Epidemiology and Climate Change, Opening Workshop, RTP, North Carolina, September 14, 2009. 

(Wikle) A class of nonlinear spatio-temporal dynamic models. Invited Talk, Joint Statistics Meetings, 
Washington, DC, August 4, 2009. 

RESULTS 

MFS-Wind-BHM 

We are awaiting word from QJRMS on the status of the revised manuscripts; Milliff et al., 2010 (part I) 
and Bonazzi et al., 2010 (part II). 

MFS-Error-BHM 

Embedded scales in the error covariance estimations of ocean forecast systems act to rescale the error 
covariance magnitudes. Anomaly data stage inputs are probably not sufficient to represent abrupt 
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regime shifts in the ocean state and provide added value over operational methods using a fixed, 
seasonal, background error covariance. Experiments adding misfit data stage inputs will be useful in 
modelling error covariance response to ocean regime shifts in the Mediterranean on sub-seasonal 
timescales. 

Under seperate ONR funding, the MFS-Error-BHM methodology is being adapted to the California 
Current System and the Regional Ocean Model System, four-dimensional variational data assimilation 
and forecast tools developed by Prof. A. Moore and colleagues. 

IMPACT/APPLICATIONS 

MFS-Wind-BHM 

BHM methods are proving feasible and practical in an array of ocean data assimilation and forecast 
applications. The papers, Milliff et al. (2010) and Bonazzi et al. (2010) will serve as detailed generic 
references for this methodology in ocean and atmospheric sciences. 

MFS-Error-BHM 

Refining estimates of the time-dependent changes in ocean states and forecast uncertainty across regime 
shifts adds value to ocean forecast system output. 

MFS-SuperEnsemble-BHM 

First steps in developing super-ensemble ocean forecast techniques for targeted fields and/or processes 
will provide for feasibility and practicality assesments of this popular, but poorly understood, 
methodology. Model bias distributions will demonstrate a new means of comparing forecast tools that 
are being developed in the community (i.e. ROMS, OPA, NEMO). 

TRANSITIONS 

Informal communications continue with scientists in the Ocean Modelling branch of the Naval 
Research Laboratory, Bay St. Louis, MI. 

RELATED PROJECTS 

“Estimating Ecosystem Model Uncertainties in Pan-Regional Syntheses and Climate Change Impacts 
on Coastal Domains of the North Pacific Ocean”, NSF US Globec Program, October 2008 - October 
2011. 

“Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and 
Forecasts”, ONR Physical Oceanography Program; Milliff, Berliner, Wikle, co-PIs. 

“Quantifying the Amplitude, Structure and Influence of Model Error during Ocean Analysis and 
Forecast Cycles”, ONR Physical Oceanography Program, A. Moore (PI). 
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