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LONG-TERM GOALS 

Ocean waves are an important aspect of upper ocean dynamics, in particular on the shallow 
continental shelves and in coastal areas. The long-term objective of this work is to advance 
modeling capability in such shallow areas by improving model representations of nonlinear 
effects and dissipation. 

OBJECTIVES 

The specific objectives of the present work are 1) to develop and implement an efficient, scalable  
approximation for the nonlinear quadruplet source term, 2) to develop and implement a 
generalized nonlinear source term that is accurate in water of arbitrary depth, 3) to develop and 
implement an improved nonlinear closure for triad nonlinear interactions in shallow water, and 
4) improve representations of dissipation by wave breaking and wave-bottom interactions. 

APPROACH 

Modern, third-generation (3G) wave models are based on the action balance (or radiative 
transfer) equation, which is a geometrical optics description of the evolution of wave energy (or 
action) through a slowly varying medium and time. In Lagrangian form (for convenience) this 
balance equation can be written as 
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( )
= Sin k + Sds k + Ssc k + Snl k (1)

dN k ( ) ( ) ( ) ( )
dt 

where N k( ) is the wave action at wavenumber vector k and t is time. The forcing terms on the 
right-hand side are known as source terms and account for the input of energy by the wind (Sin), 
spectral redistribution of energy through scattering by seafloor topography (Ssc) or through 
nonlinear wave-wave interactions (Snl) , and dissipation of wave energy (Sds) through e.g. 
breaking or bottom friction. 

In this study we will develop and improve the source terms for nonlinear interactions Snl and 
energy dissipation Sds, to account for effects of finite depth and shallow water, and to ensure a 
consistent and smooth model representation of wave evolution from deep to shallow water.  

Nonlinearity 
We will develop an efficient method for the evaluation of the nonlinear source term, allowing for 
greater efficiency and accuracy in operational use. To allow modeling of wave propagation from 
deep to shallow water, we will modify the nonlinear source term to account for changes in 
relative water depth [Janssen et al. 2006], and develop an improved closure approximation for 
nearshore wave propagation [Janssen, 2006]. 

Figure 1. Illustration of changes in nonlinear regimes 
 as ocean waves travel across the shelf into shallow water. 

Dissipation 
We will develop and test improvements to wave dissipation parameterizations through detailed 
comparisons against laboratory and field observations. 

WORK COMPLETED 

The completed work in this project includes: 
• Analysis of dissipation in nonlinear shoaling waves.  
• Development and preliminary testing of nonlinear shallow-water wave model.  
• Development and preliminary testing of new scaling for breaking parameter γ . 
• Completed review of formulations for nonlinear four-wave interactions in shallow water.  

In the following we outline some of these efforts and their principal results. 
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Analysis of dissipation in nonlinear shoaling waves 
To establish the spectral structure of dissipation in breaking waves, we used observations by 
Boers (1996) to estimate the dissipation spectrum. The analysis is based on the one-dimensional 
energy balance equation for stationary, unidirectional wave propagation, which can be written as  

dΕ1 dis nl( )  

dx 
= −Ν1 

( ) + Ν1 (1) 

where Ε1  is the wave energy flux, and the terms of the right represent (from left to right) source 
terms for dissipation and nonlinearity respectively. 

Figure 2. Regression analysis (loglog scales) of dissipation and flux spectrum. 

Dissipation is estimated from (1) using bispectral analysis and finite differencing to estimate the 
nonlinear source term and the flux gradient from the observations. Although the exact form of 
the dissipation spectrum is unknown, we assume that it can be written as  

( )dis n Ε (2)Ν1 = D f1 1 

where f j  is frequency. The exponent n  and constant D  are estimated through regression 
analysis of the observed dissipation spectrum (figure 2). The analysis (examples shown in figure 
2) shows that the exponent n  in (2) varies around a value of 2 approximately (figure 3). The 
approximately frequency-squared weighting is consistent with other studies and, combined with 
the fact that the flux spectrum tail drops off as f-2 in shallow water (figure 3), supports the 
conjecture that the nearshore dissipation spectrum is fairly white [Kaihatu et al. 2007]. 
Application of this analysis to other laboratory and field observations is ongoing.  
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Figure 3. Exponent values from regression analysis for dissipation spectrum and flux 
spectrum tail as a function of relative water depth. 

A nonlinear model for shallow-water wave propagation 
We have developed and tested a nonlinear wave model for stationary waves, which – for 
unidirectional waves -- can be written as 

⎡ d ⎤ 
x 

+ D1 ⎥Ε1 = −4∫ ∫ dω 2 dω 3Μ23 ( ) 23;1 ∫ dx 'Η23(x ', x)Β23(x ') (3)x δ⎢⎣dx ⎦ −∞ 

where Ε1  denotes wave energy flux density at frequency ω1 , Μ23  is an interaction coefficient 
derived from second-order wave theory, and 

Β23 = Ε(2+3) (Μ(2+3)( )−3 Ε3 + Μ(2+3)( )−2 Ε2 )−Μ23Ε2Ε3 (4) 

Further, in (3), we have 
⎡ x ⎤

Η (x ', x)= exp ⎢− Γ x '' dx ''⎥23 ∫ 23 ( ) (5)
⎣ x ' ⎦ 

where 
Γ23 = D23 − iΛ23 + μ23 . (6) 

In (6), the D23  accounts for dissipation, Λ23  is dispersion (resonance mismatch), and μ23  is a 
relaxation term for which we propose  

dis dis ( )dis nl nl ( )nl⎛ ⎞Ν( ) + Ν( ) + Ν + Ν( ) + Ν( ) + Ν1 2 1+2 1 2 1+2μ12 = α ⎜ ⎟ . (8)
⎜ Ε1 + Ε2 + Ε ⎟⎝ 1+2 ⎠ 

Here α  is an empirical constant (generally of O(1)). This relaxation term measures the effects of 
dissipation and nonlinearity and allows the system to reduce to a near-Gaussian state in the 
presence of strong dissipation and nonlinearity. The form (8) is inspired by the physics of the 

4 




problem, and not consistently derived from basic principles. Work is ongoing to improve the 
relaxation term using a more systematic derivation of this contribution. 

Figure 4. Spatial evolution of a freely developing spectrum (no dissipation). A narrow-band 
wave field is incident at x=0 at which location the nonlinearity is suddenly turned on. The 
evolution of the spectrum for the quasi-normal approximation (middle panel) shows rapid 

energy transfers, and negative energies. The stochastic model with the relaxation term (right 
panel) is in much better agreement with the Monte-Carlo simulation (left panel). 

Without the relaxation term (8) our model would reduce to a quasi-normal closure 
approximation, in which case triple correlations would be over-predicted and the system retains 
too much information from its past states [see e.g. Orszag, 1970; Leslie, 1973; Holloway & 
Hendershott, 1977; McComb, 1990; Herbers et al., 2003]. An example is shown in figure 4. 
Without relaxation, triple correlations are overestimated, resulting in rapid transfer of energy and 
the occurrences of negative energies (the gaps the spectra shown in figure 5).  Similarly, 
relaxation improves estimates of higher-order correlations (not shown). However, relaxation of 
the system using (8) does result in a spectral tail that is too flat. The latter shortcoming we expect 
to improve by deriving a closure approximation from first principles.  
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Figure 5. Comparison of spectra at locations as indicated in figure 4. The quasi-normal 
approximation results in negative energies (blue dashed line; the gaps in the spectrum 

correspond to negative values). The relaxation approximation remains well behaved but the 
tail of the model-predicted spectrum is less steep than seen in the Monte-Carlo simulation. 

The agreement between observations and model predictions (equation (3) with frequency-
squared dissipation weighting, and α = 1 in the relaxation term) is very good, both in terms of 
spectral shape (figure 6), and the evolution of higher-order bulk statistics (figure 7). 

Figure 6. Comparison of modeled and observed spectra at four locations in the flume. 
The combination of frequency-squared weighting of the dissipation function in the QNR 

approximation results in an accurate representation of the nonlinear wave dynamics. 
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Figure 7. Evolution of third-order bulk statistics for Boers experiment.  

Left panel: asymmetry; right panel: skewness. 


Development of a new scaling of breaking parameter γ 
The breaker index γ   is an important factor in widely-used wave breaking parameterizations 
[e.g. Janssen & Battjes, 1978; Thornton & Guza, 1983; Janssen & Battjes, 2007]. A new scaling 
for this index, referred to as n − kd  scaling [Holthuijsen & Salmon, 2010], is calibrated and 
tested using field and laboratory observations. The new scaling makes γ  dependent on both 
bottom slope and relative depth and one aspect in particular that this model addresses is that it 
reconciles the seemingly contradictory high and low γ  values in the literature for horizontal 
bottoms (with variations from 0.51 to over 1.0). Comparisons between model predictions and 
laboratory observations for both the traditional fixed-value γ  and the new n − kd  scaling 
(calibrated with field and laboratory observations) are shown in figure 8. Further validation of 
the new scaling with field observations is ongoing. 

Figure 8. Scatter plots for predicted and observed significant wave height for a number of 
laboratory studies. Left panel: breaker index default fixed value γ = 0.73 . Right panel: new 

n − kd  scaling for γ . 

7 




RESULTS 

Dissipation and nonlinear effects in shallow-water waves are of great importance to coastal 
hydrodynamics and transport processes. The findings in this study contribute to our better 
understanding of the combined effects of dissipation and nonlinearity on wave propagation in 
shallow water, and improve modeling capability of wave statistics in nearshore areas. 
In particular, the bispectral-dissipation analysis of laboratory observations suggests an 
approximately frequency-squared weighting of the dissipation spectrum in shallow water. The 
analysis results are successfully used in a numerical model to predict nonlinear wave evolution, 
and it supports the idea that the shallow-water wave dissipation spectrum is fairly white [see 
Kaihatu et al. 2007]. 

To allow modeling of highly nonlinear waves and strong dissipation, a relaxation term is 
presented to provide a closure approximation for the nonlinear system, which improves the 
model’s performance in areas of strong nonlinearity and dissipation. Further development and 
refinement of the relaxation term is underway, and testing against field observations of the model 
is ongoing. 

A new scaling for the breaker index γ  is calibrated and tested against laboratory cases and 
shows improved model performance by including both dependencies on bottom slope and 
relative water depth. Validation of the scaling against field observations is ongoing. 

IMPACT/APPLICATIONS  

The model improvements developed and tested in this study will contribute to improvements in 
modeling capability of nearshore wave propagation in research and operational models. In turn, 
improved modeling capability of wave dissipation, spectral evolution, and higher-order statistics 
such as skewness and asymmetry, will contribute to improvements in research and modeling of 
coastal circulation and transport processes. 
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