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LONG-TERM GOALS 

This year’s report is at once a summary of the past three years of work for ONR and simultaneously a 
three-year plan for the future. 

My new book [Nonlinear Ocean Waves and the Inverse Scattering Transform, Osborne, 2010] 
discusses the physics, nonlinear time series analysis, data assimilation and hyperfast modeling of 
nonlinear ocean waves. Some of the material in this book consists of mathematics not always familiar 
to oceanographers and may require an investment of the reader’s time to take full advantage of the 
methods introduced there. This book, in many ways, may be compared to the book Ocean Wave 
Spectra [ONR, 1962], which was published in a revolutionary time for the field of wind waves (the 
1950s and 60s). New data analysis procedures were being developed by Pierson, Longuet-Higgins, 
Munk, Hasselmann and others. The concept of the power spectrum was quite new to physical 
oceanographers. It is useful in this context to recall the work of Paley, Weiner and Rice in the 1930s 
and 1940s and the subsequent application to power spectra and wind waves in the 1950s and 1960s: 
This work was based upon the integrable of the square root of dx ! I recall well the consternation of 
physical oceanographers at that time about this seemingly impossibly difficult mathematics (see 
Kinsmann’s book for aid in understanding what was at that time the new mathematics). Likewise the 
introduction of the Hasselmann equation in 1961 was based on the derivation of kinetic equations from 
the Euler equations, also rather esoteric mathematics at that time. Now of course these areas of 
mathematics have been absorbed into the mainstream of wind/wave research and have lead to the 
development of modern forecasting and hindcasting models. Indeed the mathematics of 1960 seems 
mainstream today. 

The methods in [Osborne, 2010a] should be thought of in this way. Some initial investment in the 
mathematical methods will pay great dividends in future years for new physical understanding, new 
time series analysis methods, and hyperfast modeling efforts which are already yielding computer 
codes thousands of time faster on a single core and substantially more on multiple cores. 
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OBJECTIVES 

I now give a brief summary of present and future objectives. 

Rogue Waves - I am presently writing a new book on rogue waves [Rogue Waves and Holes in the Sea, 
Osborne, 2011], that is a general treatise on nonlinear waves that discusses how discrete coherent 
structures appear in ocean waves above a certain threshold, creating rogue wave packets (see Figs. 1
3). These rogue packets are exact solutions of the nonlinear Schroedinger equation and are 
approximate solutions of the Euler equations. The packets have been found in a number of new 
laboratory and ocean experiments and new methods for both (1) time series analysis and the (2) 
analysis of time series arrays have been developed to determine when rogue packets occur in a sea 
state. This book will also give a comprehensive overview of hyperfast modeling and nonlinear Fourier 
analysis of the Euler equations. An additional topic of the book will be the real time rapid 
environmental assessment of rogue wave conditions: (1) ship board nowcasting capability for the 
determination of the presence of rogue waves in a present sea state and (2) wind/wave hindcasting and 
forecasting methods for computation by, say, Fleet Numerical. These methods are based upon 
extending the methods of Osborne [2010a,b] for the Euler equations. 

Hyperfast Coastal Dynamics – The hyperfast method is being used to develop numerical methods for 
the Boussinesq equations in shallow water. Preliminary versions of the code already exist and show 
considerable promise for future coastal dynamics work. 

Hyperfast Euler Equations – The new methods are being applied to the full Euler equations for surface 
and internal waves. Wind-wave coupling will also be included in this effort. Essentially the Euler 
equations algorithm will be a generalization of the Boussinesq algorithm, with extensions out to fifth 
order, similar to higher order methods (HOM) used over the past 25 years. The difference is that the 
codes developed herein are about 500 P times faster than the HOMs, where P is the number of 
available cores in a computer. 

Hyperfast Navier-Stokes Equations – The hyperfast algorithm for the Navier-Stokes equations has 
presented a real challenge and preliminary results are already at hand. The approach is being developed 
with arbitrary boundaries, including continental and bottom boundary conditions. Coupling the ocean 
to the atmosphere is also underway. Ocean models of this type would lead the way to future modeling 
efforts of the ocean/atmosphere system. 

Hyperfast Computational Fluid Dynamics – HyperCFD numerical methods are also being presently 
developed. The hyperfast method will be applied to problems at the order of the Navier-Stokes 
equations with special boundary conditions in order to provide for the design of offshore structures, 
ships, submarines, etc. 

Computer programs are being developed for all of the above models and data analysis algorithms and 
will be written up in a third book: Nonlinear Hyperfast Modeling of Hydrodynamical Systems 
[Osborne, 2012]. 
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APPROACH 

Hyperfast models for the so-called isospectral or integrable equations are developed on a 
straightforward basis [Osborne, 2010]. I discuss here hyperfast modeling of the KP equation as an 
example of the use of the method. 

We first consider the Kadomtsev-Petviashvili (KP) equation  

ηt + coηx +αηηx + βηxxx + γ ∂
−
x 

1ηyy = 0 (1)  

Here co, α, β, γ  are constant coefficients and η(x, y,t)  is the wave amplitude as a function of the 
two spatial variables, x , y  and time, t. The KP equation (1) is a natural two-space-dimensional 
extension of the KdV equation. The periodic KP solutions include directional spreading in the 
wave field: 

∂2 
η(x, t) = 2 2 lnθ(x, y, t |B,φ)    (2)  

∂x

Here the generalized Fourier series has the form given in (4) below, where the phase has the two 
dimensional expression: 

X(x, y, t) = kx + ly − ωt + φ (3)  

The spatial terms include both the x and y coordinates, kx  and ly , which allows wave spreading to 
be taken into account. The KP equation is the first nonlinear step toward a directional sea state; KP 
is however limited to small directional spreading. Improving the directional spreading 
characteristics of the KP equation requires the addition of physically important corrections 
[Osborne, 2010]. 

The generalized Fourier series, θ(x,t |B,φ) , is given by the expression 

N N N∞ ∞ ∞ 1i m X − m m B∑ n n ∑∑ m n mn 
n=1 2 m=1 n=1θ (x, y,t | B,φ)= ∑ ∑ ... ∑ e   (4)  

m1 =−∞  m2 =−∞  mN =−∞  

where Xn = knx + lny −ωnt +φn . The function θ(x, y,t |B,φ)  is also called a Riemann theta 
function or multidimensional Fourier series. Here B is the Riemann matrix (the “spectrum” of the 
solution), the vectors k, l constitute the usual wavenumbers, the vector ω  contains the frequencies 
and the vector φ  forms the phases. The inverse problem associated with (2), (3) allows one to 
determine the Riemann matrix, wavenumbers, frequencies and phases appropriate for solving the 
Cauchy problem for KP: Given the spatial variation of the solutions at t = 0, η(x, y,0)  , compute 
the solution for all time, η(x, y, t) . This is a necessary step for the numerical simulations presented 
herein. The solitons, Stokes waves and sine waves lie on the diagonal of the Riemann matrix; the 
off-diagonal terms contain the nonlinear interactions. 
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Why is the above approach useful for hyperfast numerical simulations? Because the Riemann theta 
function can be programmed as a fast theta function transform (FTFT), just as the Fourier 
transform can be programmed as a fast Fourier transform (FFT). Therefore the numerical 
integration of KP (1) can be evaluated at specific time points, necessary only for graphical 
purposes or for extracting useful (often statistical) properties of the sea surface. This contrasts to 
the FFT that must be evaluated at very small time steps when used for the numerical integration of 
a nonlinear partial differential equation. This is one reason why the higher order methods require 
considerable amounts of computer time. 

WORK COMPLETED 

Recent work has emphasized the forecasting and hindcasting of rogue waves. The algorithms are 
based to leading order on the nonlinear Schroedinger type equations and to high order based on the 
Euler equations. Essentially the ideas proceed in the following way. The largest rogue waves have 
been demonstrated to arise because of the presence of nonlinearities in the Euler equations. 
Fundamental knowledge of the instabilities (such as that due to the Benjamin-Feir instability) of 
the equations of motion has been found to give rise to “unstable mode” rogue waves. Indeed the 
instability diagram in wavenumber space has been computed using the modern methods and have 
been related to the generalization of inverse scattering theory. Thus in all of this work nonlinear 
Fourier methods based upon the inverse scattering transform are fundamental. They tell us about 
the nonlinear Fourier structure of the waves. An example of the hindcasting method is given in the 
next section. 

RESULTS 

I now discuss the hindcasting result given in Figures 1-3. Winds from an energetic storm have been 
used to generate the directional spectrum shown in Fig. 1. The directional spectrum is a function of 
frequency and direction as indicated in the figure. Here the significant wave height is over 8 m and 
the peak period is 12.5 sec. Using the inverse scattering transform I have found that unstable rogue 
modes occur above a particular threshold as shown in the figure. This effect physically happens 
because of the formation of pairs of Stokes waves that phase lock with each other above the 
threshold. The paired Stokes waves form packets that are unstable to perturbations of their 
envelopes. Figure 2 shows the power spectrum, found by integrating over the angle in the 
directional spectrum. The rogue packets are indicated as red dots in the figure. Here I have graphed 
the maximum amplitudes of the central wave in the packet. As can be seen the maximum packet 
amplitudes far exceed (by about a factor of three) the amplitudes of the background sine or Stokes 
waves in the spectrum. It is therefore easy to see how the rogue packets can rise up out of the 
background sea state so easily. In Fig. 3 I show the largest of the two-dimensional rogue packets in 
the spectrum. One sees not only that the crest height is quite large in the present case. In addition 
the trough forms a very interesting hole in the se. The details of the hindcasting and forecasting 
work will be given in future papers and in Osborne [2011]. 

TRANSITIONS 

Transitions expected are related to the use of the codes as guidance to ships and unmanned, 
unteathered vehicles in the internal wave field and for the real time sampling of the environment, 
including the acoustic waves. 
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RELATED PROJECTS 

An intimate relationship between our results and other projects exists because the sea surface 
provides a major forcing input to many kinds of offshore activities, including the dynamics of 
floating and drilling vessels, barges, risers and tethered vehicles. The present work leads to a 
nonlinear representation of the sea surface forcing and vessel response for shallow water waves. 
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Figure 1. The directional wave spectrum from a hindcast storm. The significant wave height was 
over 8 meters. Nonlinear Fourier analysis demonstrates the existence of a threshold (the 

horizontal cyan plane) above which rogue wave packets form. This work illustrates the power of 
the nonlinear Fourier method for forecasting/hindcasting rogue waves. 
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Figure 2. The power spectrum, in the hindcast case of Figure 1, forms rogue wave packets about 
the peak of the spectrum. The rogue packets are indicated by red dots that have been graphed 
with their maximum physical amplitude. Spectral components outside the central rogue wave 

band are Stokes or sine waves. 
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Figure 3. Largest rogue packet from the peak of the hindcast spectrum of Figure 1. 
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