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LONG-TERM GOALS 

The long range scientific goals of the proposed research comprise: (1) developing rigorous ap­
proaches to optimal combining different kinds of observations (images, ADCP, HFR, glider, drifters 
etc) with output of regional circulation models for accurate estimating the upper ocean velocity 
field and mixing characteristics (2) constructing computationally efficient and robust estimation 
algorithms based on alternative parameterizations of uncertainty and comprehensive testing them 
on synthetic data (3) processing real data in the Adriatic and Ligurian Sea (MREA coastal exper­
iments) via new techniques 

OBJECTIVES 

The objectives for the second year of research were:
 
- Enhancing the fusion method for computing surface velocities [1] by accounting for uncertainties
 
in tracer generation and dissipation.
 
- Constructing and testing fusion algorithms for data coming from different sources at different
 
resolution.
 
- Developing fusion methods based on the fuzzy logic [2-4] for estimating oceanic parameters from
 
small biased samples.
 

APPROACH 

We develop theoretical approaches to the data fusion problem in context of the possibility theory 
(fuzzy logic) and in the framework of the classical theory of random processes and fields covered 
by stochastic partial differential equations. We also design computational algorithms derived from 
the theoretical findings. A significant part of the algorithm validation is their testing via Monte 
Carlo simulations. Such an approach provides us with an accurate error analysis. Together with 
my collaborators from Rosenstiel School of Marine and Atmospheric Research (RSMAS), Consiglio 
Nazionale delle Ricerche (ISMAR, LaSpezia, Italy), Naval Research Laboratory (Stennis Space 
Center, Mississippi), ENEA (Rome, Italy), Koc University (Istanbul, Turkey), and Naval Post-
graduate School (Monterrey, CA) we implement the algorithms in concrete ocean models such as 
QG, POM, MICOM , NCOM, and MFS, as well as carry out statistical analysis of real data sets 
by means of new methods. 
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WORK COMPLETED 

1. Enhancing the fusion method developed by PI for computing surface velocities by accounting for 

uncertainties in tracer generation and dissipation. 

A newer version of the method for optimal estimating surface velocities from model output and 
tracer observations [1] has been developed on the base of representing uncertainties via possibility 
theory means [2-4]. The focus was on accounting for uncertainties in generation and dissipation. In 
particular, the approach targeted color images formed mostly by chlorophyll concentration for which 
production and dissipation processes are difficult to parameterize and quantify. The dependence 
of the estimation error on parameters of the possibility distributions involved was comprehensively 
studied [5]. Explicit estimation formulas were obtained not involving any numerical integration and 
optimization which is of great importance for fast computations when the number of grid points is 
very large. 
Extended Monte Carlo simulations were carried out to evaluate the estimation skill on different 
model flows in conditions of poorly known the right hand side (RHS) of the tracer transport equa­
tion. Different scenarii for uncertainties in RHS were examined and recommendation for choosing 
parameters of the corresponding possibility distributions (membership functions) were worked out. 

2. Constructing and testing fusion algorithms for data coming from different sources at different 

resolution. 

A general approach to fusing data at different resolution has been developed by combining ideas from 
two novel areas: multi objective optimization and fuzzy set theory. The focus was on estimating 
(Eulerian) velocities from coarse direct observations and fine tracer data. 
Typically, direct measurements covering a significant area cannot provide a high degree of the space 
resolution because of technical difficulties and high cost of such measurements. For example the 
distance between ADCP (Acoustic Doppler Current Profiler) stations in NAVOCEANO shipboard 
surveys (California Coastal Region) is about 18.5 km. On the other hand the space resolution of 
satellite observations of the sea surface temperature and chlorophyll concentration is much higher, 
1-2 km or less depending on a type of radiometers. 
We have constructed and tested an algorithm for optimal combining coarse irregular ADCP mea­
surements with tracer observations, either SST or color, on a fine grid. Besides multi objective 
optimization ideas the algorithm takes advantage of parameterizing uncertainties in models and ob­
servations via the fuzzy logic approach which is more general than the classical statistics paradigm. 
The method was comprehensively tested on synthetic velocity fields and compared to traditional 
interpolation procedures. 

3. Developing fusion methods based for estimating oceanic parameters from small biased samples. 

Sparse observations, biasness, and small samples pose serious obstacles for application of classical 
statistical methods in processing ocean data. An alternative approach has been developed for fusing 
such data and making inferences base on the fundamental concept of Pareto optimal solutions in 
multi objective optimization problems [6]. 
First, a fuzzy estimator based on a triangle membership function was suggested and studied for an 
ocean parameter, such as temperature or velocity at a fixed point, from two small biased samples 
[7]. Its performance was compared with the weighted mean and weighted median for different types 
of the noise distribution. 
Then, numerical simulations were carried out to compare the suggested estimator with those based 
on other types of membership functions. 
Finally, the structure of the Pareto optimal set for the number of sensors (information sources) 
more than two has been studied and the corresponding aggregated estimators were examined by 
Monte Carlo means. 



RESULTS 

1. The developed method proved to be accurate and extremely computationally efficient in condi­
tions of poor known RHS for the tracer. Improvement comparing to the model output varied from 
8 to 27 % depending on the considered flow, parameters of the tracer patch and uncertainties in 
RHS. One of the examples is presented in Fig.1 where the ’true’ velocity field was represented by 
a circulation cell superimposed by eddies and the model output was represented by the circulation 
cell itself. 
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Figure 1. Fusion of tracer observations and circulation model output (experiment with a circulation cell 
superimposed by eddies): 1) Background (model output). 2) ’Truth’. 3) Tracer observations (color). 
4) Estimate. 

The most important finding is that the method performs better than its predecessors developed 
in [1] in the case of significant uncertainties in tracer generation and dissipation as proven by 
Monte Carlo simulations and a theoretical error analysis. We also established a low sensitivity of 
the method performance to the location and initial size of the tracer patch. The most influential 
parameter is the forcing intensity in the transport equation, its high values do not allow to improve 
the estimate comparing to the model output. 

2. The main result in data fusion at different resolution is that the developed method clearly out­
performs traditional interpolation procedures which are intrinsically not able to capture subgrid 
scales. One of the experiments is illustrated in Fig. 2 for a gyre superposed with a periodic 
system of eddies. As one can see the method allows for very accurate estimate of the complex cir­
culation patterns, while the classical interpolation approach provides an estimate of the background 
circulation only(large scale gyre). 

Another example deals with a hypothetical coastal current perturbed by an isolate eddy (Fig.3). 
Clearly, coarse velocity measurements are not able to detect the eddy via interpolation. At the 
same time combining velocity data with tracer measurement on a fine grid one can get a clear idea 
on the size and location of the eddy. 
In summary, the improvement achieved by using the suggested estimator comparatively to the 
optimal interpolation turned out to be in the range 10% − 48% depending mostly on the flow 
characteristics and the ratio of the space steps in velocity and tracer observations. 

3. As for the estimation problem for small biased samples, the most principal conclusion is that the 
developed fuzzy estimator performs better than traditional statistical tools in a majority of scenarii 
with two biased small samples. Our approach models a typical situation in estimating the ocean 
state when information comes from different sources. The estimation skill was quantified by the 
dependence of the estimation error on two parameters α and β characterizing the ratio of biases 
and noise intensities for two sources. The dark area in Fig. 4 corresponds to the set of α and β 
where the fuzzy estimator is better than the traditional weighted mean or median widely used in 
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Figure 2. Fusion of synthetic ADCP and tracer data ( a gyre superposed with a periodic eddy system). 
Upper panel: 1) Velocity observations. 2) Tracer observations. 3) ’True’ velocities. Bottom panel: 
1) Velocities estimated by fuzzy multi-objective algorithm . 2) Velocities interpolated by a standard 
interpolation scheme. 3) Large scale component of ’true’ velocity field (background) days. 

Observed velocity field Tracer True
 
0
 

0
 0 

−5 
−5 −5 

−10 
−10 −10 

−15 −15−15 

−20 −20−20 

−25 −25−25 

−30 −30−30 

−35−35−35 

−40−40−40
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 10 20 30 40 

Estimated velocity field Optimal Interpolation Background 

0 0 
0 

−5 −5 −5 

−10 −10 −10 

−15 −15 −15 

−20 −20 −20 

−25 −25 −25 

−30 −30 −30 

−35 −35−35 

−40 −40 
0 10 20 30 40 −40

0 5 10 15 20 25 30 35 40 0 10 20 30 40 

Figure 3. Fusion of synthetic ADCP and tracer data for a coastal flow with an isolated eddy. Upper 
panel 1) Velocity observations. 2) Tracer observations 3) ’True’ velocities. Bottom panel 1) Estimated 
velocities . 2) Interpolated velocities. 3) Large scale component of ’true’ velocity field (background). 
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Figure 4. Comparison of the multi objective fuzzy estimate with weighted median (WMED) for Cauchy 
samples. Top panel: Bias. 1) WMED, 2) Fuzzy, 3) The dark area indicates the set of parameters α, β, 
where the fuzzy estimate is better than WMED in terms of bias. Bottom panel: Standard Error 1) 
WMED, 2) Fuzzy, 3) The dark area indicates the set of parameters α, β, where the fuzzy estimate is 
better than WMED in terms of STD. 

In general it was proven by using Monte Carlo simulations and some theoretical means that the 
suggested approach improves estimates comparatively to traditional statistical methods like the 
weighted mean (optimal interpolation) and the weighted median, especially for distributions with 
heavy tails. The fuzzy estimator is also more efficient when noise distributions are different for 
different sources. 
In summary, our theoretical findings and simulation results might serve as a guidance for choosing 
a particular estimation method from the discussed ones based on preliminary information on rela­
tions between unknown biases and variances in observations and model output. 

IMPACT/APPLICATIONS 

The developed data/model fusion methods are highly portable and computationally efficient, mak­
ing them very valuable in the framework of operational strategies for rapid assessment and quick 
response. They have therefore some significant advantages with respect to other techniques re­
quiring complete assimilation of the tracer information in the dynamical velocity models. These 
techniques, even though more powerful, require significant coding and computational time and they 
have to be set up in advance for the specific operational model in use. Moreover, the developed 
methods are resistant to uncertainties in tracer generation/dissipation , are capable to aggregate 
data at different resolutions, and account for sample biasness. Thus, we expect that our results will 
stimulate more efforts in developing fusion methods which carry no risk of ruining a model during 
the running time and , in addition, are well theoretically founded. 
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As for applications, both methods contribute to a variety of practical environmental and opera­
tional issues such as monitoring and forecasting pollutant spreading, search and rescue operations 
in the sea, and prediction of fish larvae. 

TRANSITIONS 

The developed velocity fusion algorithm was used in RSMAS and ENEA (La Spezia, Italy) to test 
it in the operational Mediterranean Forecasting System (MFS). 

RELATED PROJECTS 

1. ”Predictability of Particle Trajectories in the Ocean”, ONR, PI T.Ozgokmen , RSMAS, N00014­
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