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LONG-TERM GOALS 

The goal is the development of a time-domain acoustical method for investigating the spatial and 
temporal stochastic variations in fish density within fish schools, and thereby study the statistical 
fluctuations in the scattering of sound from these objects. 

OBJECTIVES 

The objective of this research is to develop a complete time-domain theory of acoustic scattering from, 
and propagation through, schools of swim bladder fish at and near the swim bladder resonance 
frequency, including multiple scattering and coherent interaction effects between the individual fish. 
This should then lead to a prescriptive capability for modeling the evolution of sound pulses as they are 
scattered from, and pass through, fish schools. Subsequently, it should be possible to identify discrete 
segments of the signal with different sections of the fish school, and enable an enhanced understanding 
of signal scattering, and extinction, by the school, and the fluctuations in these properties. 

APPROACH 

The personnel participating in this work at the present time are: Principal Investigator: Christopher 
Feuillade - Ph. D. (Physics), Manchester, UK, 1977. (Visiting Professor, Pontificia Universidad 
Católica de Chile); Assistant: Maria Paz Raveau Morales - Civil Engineer in Sound and Acoustics 
INACAP, Chile, 2009. (Doctoral student, Pontificia Universidad Católica de Chile) 

A methodology for approaching this problem is available through the application of self-consistent 
mathematical techniques (see Ref 1). The formalism used is based upon the solution of sets of coupled 
differential equations, and incorporates a verified swim bladder scattering kernel (Ref. 2) for an 
individual fish. All orders of multiple scattering interactions between the fish are included, and the 
aggregate scattering field calculated by coherent summation. 

(a) Steady-state solution: Near the swim bladder resonance frequency, the azimuthal scattering 
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distribution of an individual fish is practically spherically symmetric, and this has led to the 
development of “bubble-like” swim bladder models, where the resonance behavior is described by a 
“mass-spring” type differential equation, i.e., 

mv̈+ bv̇+ κv = −Peiωt , (1) 

where v is the differential volume (i.e., the difference between the instantaneous and equilibrium bubble 
volumes). The coefficient m(= ρ/4πa) is termed the inertial “mass” of the bubble, where a is the 
bubble radius and ρ the water density; and κ(= 3γPA/4πa3) is the “adiabatic stiffness”, where γ is the 
ratio of gas specific heats and PA the ambient pressure. The variables P and ω represent the amplitude 
and frequency respectively of the periodic external pressure field, and the coefficient b describes the 
damping of the bubble motion. In the school model solution, b is replaced by a factor corresponding to 
the damping predicted by a suitable swim bladder model for the species and depth location of the fish 
under examination. 

If a harmonic steady state solution of (1) of the form v = ¯ iωt is assumed, substitution gives the ve
resonance response 

−P (−P/mω2)
v̄ = = , (2)

κ − ω2m + iωb (ω0
2/ω2) − 1 + i(b/mω)   

where ω0 = κ/m = 3γPA/ρ is the resonance frequency. Equation (2) describes a Lorentzian 
resonance response. The imaginary component (b/mω) in the denominator can be identified with a 
damping constant δ for the bubble, consisting of radiative, viscous and thermal terms, i.e., 

(b/mω) = δ = δr + δv + δt . (3) 

At resonance the damping constant is equivalent to the reciprocal of the “quality factor” Q, so that 

1
δR = δRr + δRv + δRt = . (4)

Q

In the theory of resonant acoustic scattering by fish swim bladders developed by Love (Ref. 2), the 
quantity δ is replaced by a factor (ω0/ωH). The frequency dependent parameter H (which is equal to Q 
at resonance) also consists of three components, which are combined as follows 

1 1 1 1 
= + + . (5)

H Hr Hv Ht 

In the case of fishes, the damping due to thermal conductivity effects is generally negligible compared 
to radiative and viscous damping. The values of Hr and Hv are given by 

ω0c ω0ρa2 
Hr = ; Hv = (6)

ω2a 2ξ 

where ξ is the viscosity of fish flesh surrounding the bladder. The difference between water and fish 
flesh densities is generally very small and may be neglected. 

(2) Steady-state solution of a school of fish: When a swim bladder is ensonified by an external field, it 
scatters sound. The acoustic field reradiated by the bladder is predominantly monopolar and isotropic, 
and the pressure field at radial distance r due to scattering is given by 

ρe−ikr 
p(r) = v̈ (7)

4πr 
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If we consider an external field driving an ensemble of N interacting swim bladders. The total field 
incident on any one of the bladders is the sum of the external field and the scattered fields from all of the 
others. The response of a whole ensemble of fish (all of them different from each other) may be 
represented by a set of coupled differential equations as follows: 

−ikr j1i(ωt+φ1) − ∑N ρe m1v̈1 + b1v̇1 + κ1v1 = −P1e j= 1 4πr j1 
v̈ j 

· · · · · · · · · 
−ikr jn 

mnv̈n + bnv̇n + κnvn = −Pnei(ωt+φn) − ∑N ρe v̈ j . (8)=nj  4πr jn 

· · · · · · · · · 
−ikr jN i(ωt+φN ) − ∑N−1 ρe mNv̈N + bNv̇N + κNvN = −PNe v̈ jj=1 4πr jN 

Here, Pn and φn are the amplitude and phase respectively of the external field experienced by the nth 
bladder, and r jn is the radial distance from the center of the nth bladder to the center of the jth bladder. 
The quantities bn in these equations incorporate the damping factors from the Love swim bladder model 
of Ref. 2. The LHS of these equations describe the motions of each of the N bubbles [as on the LHS of 
eq. (1)], and the RHS give the total aggregate field acting on each one of them. 

Harmonic “steady-state” solutions of these coupled equations were found by substituting vn = veiωt etc.¯
in (8). This leads to a matrix equation which may be written Mv = p ; where v = {v1, ...,vn, ...,vN} and 

iφ1 iφnp = {−P1e , · · ·Pne , ...,PNeiφN } are column vectors containing the steady state volume oscillation 
amplitudes and external fields respectively for the individual bladders, and M is an N × N matrix with 
elements: 

−ikr jn −ω2ρe
Mnn = κn − ω2mn + iωbn ; Mn j = (n = j). (9)

4πr jn 

Each diagonal term (e.g., Mnn) describes the resonance behavior of an individual bladder, as if it were 
uncoupled from all the others. Variations in size, damping, depth etc., may be incorporated into these 
diagonal elements. Every off-diagonal element (e.g., Mn j) describes the radiative coupling between two 
of the bladders due to their scattered acoustic fields. The matrix falls into two distinct parts. The 
solution of the matrix equation (i.e., v = M−1p ) enables the description of steady state scattering from 
the whole ensemble of swim bladders as a function of the external field amplitude and frequency. The 
matrix inversion process incorporates all orders of multiple scattering. Once the solutions vn are found 
for the individual swim bladders, the scattered pressure field for the whole school may be readily 
obtained using coherent summation. 

(3) Time-domain solution for a school: The aim of this research is to obtain explicit analytic 
time-domainsolutions of a more generalized form of equations (8) for arbitrary time-dependent external 
input fields, i.e., [P1(t), · · · ,Pn(t), · · · ,PN(t)], which are not necessarily harmonic. 

The purpose is to then to use these solutions to describe the evolution of sound pulses as they are 
scattered from, and pass through, fish schools, and to identify discrete segments of the acoustic signal 
with different sections of the fish school, leading to an improved understanding of signal scattering, 
signal extinction, and their fluctuations. This is schematically depicted in Figure 1. 

WORK COMPLETED 

Work on the project began in March 2011, the beginning of the academic year in Chile. During the 
period March-October 2011, we have concentrated on using the current steady-state model (Ref. 1) to 
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Figure 1: This schematic diagram depicts the concept of identifying individual segments of both the 
back scattered signal pulse, and that passing through the school, with different sections of the fish 

school. This should provide a tool for characterizing fluctuations of the acoustic scattering. 

perform a study of the acoustic field in the forward scattering region of a fish school, and to understand 
how it differs from the back scattered field. In the forward region, the field has two components: the 
forward scattered field, and the incident field. These usually combine coherently, and it is usually 
difficult to separate them. The purpose here has been to explore issues which, in the time-domain case, 
will affect the identification of the forward scattered signal, and the extraction of school information 
from it. 

This aspect of the work has been largely completed, and a paper on it is to be given at the 162nd 
Meeting of the Acoustical Society of America in San Diego, California 31 October - 4 November 2011. 

RESULTS 

Figure 2 shows the target strengths of a small school of fish, as predicted by the school scattering model 
of Ref. 1. In the upper figure the solid line shows a series of peaks and troughs as a function of 
frequency, which is characteristic of back scattering from a closely packed school of fish, where the 
interference effects between the radiated field from the individual fish lead to Bragg scattering effects. 
The lower figure shows the equivalent target strength in the forward scattering direction, for the same 
series of random snapshots of 13 fish, assuming no interaction with the incident field. Note, in this case, 
that the phase differences, which lead to frequency dependent interference effects in the back scattering 
case, are annulled, so there are no peaks and troughs. The forward scattered fields from the fish are 
highly coherent. This strongly suggests that, when the time-domain case is addressed, there will likely 
be similar large differences between the characters of the back and forward scattered fields, which will 
require different types of interpretation. 

The spatial distribution of the ensemble forward scattered field for the 13 fish of Figure 2, is shown in 
Figure 3. We see that, while scattering from individual fish in the monopole resonance frequency region 
is practically spherically symmetric, the greater coherence of the scattered fields in the forward scatter 
direction leads to strongly constructive interference in that direction. However, as we will see, the 
manifestation of this effect as a detectable phenomenon depends strongly on other factors. 

In practice, as mentioned above, the total field in the forward direction is usually formed by the addition 
of the scattered field and the incident field. In relation to this, another important aspect of scattering in 
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Figure 2: These figures show the target strength predicted for a small school of 13 fish, of average 
length 40 cm, at a depth of 50 m, with fish flesh viscosity ξ = 500 poise, averaged over ten 

randomized snapshots of fish locations. In both cases the solid line is the prediction of the school 
scattering model of Ref. 1, and the dashed line is the target strength of the fish added together 

incoherently. The upper graph is for back scatter. The lower graph is for forward scatter. 

Figure 3: The spatial distribution of the modulus of the scattered field amplitude for the same fish, 
and series of snapshots, shown in Figure 2. The input field, incident from left to right, is given 

amplitude 1. The quantity plotted in the figure is |p|− 1, where |p| is the scattered field amplitude 
predicted by the school model. Anything red is > 0, anything blue is < 0. The frequency of 380 Hz is 

the average resonance frequency in the school. 
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Figure 4: Combining the scattered field and incident field for a single fish. On the left are plotted the 
scattered field (dashed line) and total field (solid line), along the x axis, for excitation of a single 

bladder of resonance frequency 393 Hz, at three frequencies: 367 Hz, 393 Hz, 419 Hz. On the right 
are plotted the spatial distributions of the total field amplitude (i.e., |p|− 1) for the same cases. Fish 

length 40 cm, depth 50 m, fish flesh viscosity ξ = 500 poise. 

the forward direction from fish swim bladders is due to the change of phase introduced by the 
resonators themselves, which causes the scattered field and the incident field to combine together in 
different ways, depending upon the applied frequency. 

What is seen in Figure 4 is that, when excited below the resonance frequency, the phase of the forward 
scattered field is such that it interferes constructively with the incident field, to produce a total field 
amplitude on the forward axis which is greater than that of the incident field. On the other hand, above 
resonance the fields add destructively, and this leads to a reduction in the total field amplitude below that 
of the incident field. Exactly at resonance, the total field amplitude is equal to that of the incident field. 

In Figure 5, the same quantities (as in Figure 4) are plotted for a large school of 5000 fish. We again see 
that the phase of the scattered field varies with frequency, such that it interferes with the incident field in 
variable ways. However, in this case, the effect of incorporating scattering effects from a large 
ensemble, via the school scattering model, shifts the region where the forward scattered field increases 
the total field amplitude on the forward axis, to a lower frequency. Even at 200 Hz, which is 
significantly lower than the resonance frequency, the two fields combine to reduce the amplitude in the 
forward direction, and therefore the school of fish casts an acoustic “shadow”. 

Figure 6 shows the attenuation of the field on the forward axis due to a smaller school of 100 fish, at a 
range of 5 km. Again, there is no indication of the strong peaks and troughs seen in the back scattering 
results presented in Figure 2. The average resonance frequency is about 388 Hz, and below this there is 
a small frequency region where the fields combine to increase the total field amplitude above that of the 
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Figure 5: Combining the scattered field and incident field for a large school of fish. On the left are 
plotted the scattered field (dashed line) and total field (solid line), along the x axis, for excitation of 

the school at three frequencies: 200 Hz, 388 Hz, 600 Hz. On the right are plotted the spatial 
distributions of the total field amplitude (i.e., |p|− 1) for the same cases. The school has 5000 fish, of 

average length 40 cm, at a depth of 50 m, with fish flesh viscosity ξ = 500 poise. The average 
resonance frequency is about 388 Hz. 

Figure 6: Attenuation of the acoustic field in the forward direction. The amplitude of the combined
 
acoustic field is plotted (as |p|− 1) on the forward axis, as a function of frequency, at a range of 5
 
km. The school has 100 fish, of average length 40 cm, at a depth of 50 m, with fish flesh viscosity
 

ξ = 500 poise. Results averaged over ten randomized snapshots of fish locations.
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incident field. However, over most of the frequency range, the fish school leads to an attenuation of the 
acoustic field. This relative pattern of the amplitude distribution is unchanged with distance in the 
forward direction. The overall amplitude is reduced as distance increases. 
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IMPACT/APPLICATIONS 

This work has the potential for indicating how methods of time signal analysis may be used to 
investigate the stochastic variations of shape and distribution of fish in a school, and how these affect 
the statistical properties of acoustic scattering from these ensemble objects. 

TRANSITIONS 

None at the present time. 

RELATED PROJECTS 

Experimental and other work by other participants in the ONR BRC, Fish Acoustics program. 
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