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LONG TERM GOALS 
 
Development of accurate and fast advanced statistical and dynamical nonlinear models of ocean 
surface waves, based on first physical principles, which will improve and accelerate both long term 
ocean surface waves forecasts and prediction of strongly coherent events, such as freak waves, tsunami 
and wave-breaking.     
 
OBJECTIVES 
 
Finding of physically correct wind input term for Hasselmann equation, understanding of the balance 
of source terms in Hasselmann equation, investigation of the problem of interaction of different scales 
on the ocean surface (sea and swell), development of new water surface analytic models and methods 
of their solution.  
 
APPROACH 
 
Advanced analytical techniques: Hamiltonian formalism, self-similar solutions, analytic solutions of 
integral equations; numerical methods for solution of integral and pseudo-differential equations; 
comparison of analytic and numerical results with experimental data  
 
WORK COMPLETED 
 

• Finding of the new wind input term through experimental, theoretical and numerical 
approaches  

• Theoretical and numerical proof of nonlinear interaction term domination over wind input and 
dissipation terms in Hasselmann equation.  

• Detection of swell feedback by sea background through theory and experimental data 

• Design of new method for numerical integration of Hasselmann equation 

• Derivation and numerical testing of one-dimensional version of Zakharov equation, especially 
convenient for theoretical and numerical study of freak waves 
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RESULTS 
 

1. New wind input term through experimental, theoretical and numerical consideration 
 

Nowadays, Hasselmann equation is widely accepted model of wind-driven seas [1]:   
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The nonlinear interaction term nlS is perfectly known. Unfortunately, the knowledge of wind input inS  
and white-capping dissipation dissS terms is poor. Creation of reliable and well justified theory of inS  is 
hindered by strong turbulence of the air boundary layer over the sea surface. As a result, there is a 
dozen of heuristic models of inS  with enormous scatter of parameters [4]: the Donelan model [2] 
predicts inS  about five times higher than Hsiao-Shemdin model [3].  Situation with dissS  is not better -
the theory is not developed, the experimental data are far from being complete. The forms of dissS  used 
in operational models are heuristic and badly justified [18]. 
 
We managed to find the new form of the dissipation term dissS through experimental, theoretical and 
numerical approaches. Resio and Long, 2004 [5] presented data of wind wave spectra from several 
experimental installations in non-traditional form, expressing coefficient  
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in Kolmogorov-Zakharov energy spectra 
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in terms of  specific combination of velocities. Here  00553.04 =α , pc - spectral peak velocity, 

93.10 =u м/сек,   λu  - wind speed at the height equal fixed portion 065.0=λ  of the spectral peak 
wave length pk/2π , where pk  is the wave number of the spectral peak. It is remarkable that 
practically all experimental results presented in [5] exhibit portion of the spectrum obeying the law (3). 
 Consider Hasselmann equation (1) in "time-domain" form 
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forcing function in the form )(),( 1 θαωθωγ fs+=  and  self-similar substitution  
)(),,( qqp tFttE ωθω +=       (5) 

 
we get the indices of self-similar solution (5): 
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Comparison of the indices p and q with characteristics of the regression line (2) gives the index of the 
wind source 3/4=s  and parameterization of the new wind input term: 
 

3/7ω∝inS       (6) 
 

Numerical simulation of the Hasselmann equation (4) with wind input term (6), presented on Fig.1 , 
reproduces the regression line (2) with high accuracy for the wind speed values from 2 to 10 m/sec.  
 
We have found new wind input term through experimental, theoretical and numerical considerations, 
which can be used for quality prediction improvement by operational wave forecasting models. 
 
 

 
 

Fig. 1  Experimental, theoretical and numerical evidence, presented on the same plot, in variables  
β1000  as a function of ( )

2/1

2

g
cu pλ . Dotted line -- experimental regression line by Resio and Long, 

2004 [5]; dashed line -- theoretical result, reproducing regression line; numerical result: crosses -- 
wind speed u=2.5 m/sec; stars -- wind speed u=5.0 m/sec; rectangles -- wind speed u=10.0 m/sec; 

triangles -- wind speed u=20.0 m/sec. 
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2. Energy balance in wind-driven seas within the Hasselmann equation  
 
The problem of balance of different terms in the right-hand side of the Hasselmann equation (1) is a 
key question for both wind-wave interaction theory and modeling. Today's mainstream emphasis is on 
developing new functions inS  and dissS , but not correct and accurate calculation nlS . Confusion comes 
from [6], where all three source terms in (1) have been compared for the case of fully-developed 
(mature) sea, and conclusion has been made that terms inS  and dissS  can be two-three times greater 
than nlS .  We show, in fact, that situation is opposite: nlS  has a leading role in balance of wind-driven 
seas. The analysis is based on decomposition of nlS  into nonlinear damping kk NΓ  and forcing kF  
 

kkknl NFS Γ−=      (7)  
 

where kΓ – positive nonlinear damping decrement, kN – spectral density of wave action. Our numerical 
and analytical results show that kk NΓ  and kF surpass conventional parameterizations of input and 
dissipation of wind-driven waves by, at least, one order of magnitude, see Fig.2. 
 
An additional argumentation is presented in Fig.3, where nonlinear damping decrement kk NΓ  is 
compared to empirical parameterizations of wind-wave growth given by different authors and used in 
the today wave forecasting models as an option. 
 

 
 
 

Fig.2 Decomposition of the nonlinear term  Snl  (solid line) for the case by Komen et al. (1984) [6] 
into nonlinear forcing (dashed) and damping (dotted) terms (see Eq.7) 
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Fig.3 Nonlinear damping coefficient kΓ  given by theoretical estimate and by the numerical 
simulation (dashed and solid bold curves, correspondingly). Conventional dependencies of wind 

growth increments are shown by thin curves with authors' names in the legend 
 
Our result on dominating effect of nonlinear interaction on wave spectra evolution should not be 
interpreted as a call to ignore the effects of wind input and wave dissipation. The leadership of nlS  
does not mean that we disregard wind input and dissipation, we just put them in proper place. The 
strong nonlinear forcing and damping that compose the conservative term nlS  determine strong 
relaxation and a universality of spectral shaping due to inherent wave dynamics, while inS  and dissS  are 
responsible for growth of total energy. 
 
Obtained result will help to make better theoretical estimates of solutions of Hasselmann equation and 
help to develop simplified approximations to source terms. 
 

3. Global visual observations as a tool for discriminating swell and wind seas 
 

Today's Voluntary Observed Ships (VOS) data are considered as a source of information on climatic 
features of the world ocean rather than experimental background of studies of physical mechanisms of 
wind-wave dynamics. We are trying to change this tradition by applying results of asymptotic weakly 
turbulent model of wind-driven seas [1], [4], [8] to extensive data base of the Global Atlas of Ocean 
Waves [9], [10]. 
 
The global visual wave observations are re-analyzed within the theoretical concept of self-similar 
wind-driven seas . The theoretical criteria of discriminating wind-driven and swell seas are formulated 
and shown to be adequate to the problem. The results are detailed for the South Pacifica, which wave 
climatology based on VOS data is well studied and the swell component is well pronounced. The core 
of the analysis are one-parametric dependencies "wave height - wave period" Z

s CTH = . The 
reference cases [11], [12],[13] have found, correspondingly, 3/5=Z , 2/3=Z  and 3/4=Z . This set 
of exponents Z has been interpreted recently in [1], [4], [8] in terms of spectral fluxes and total wave 
input. An alternative reference case – sea swell gives an opposite signature of the exponent 2/1−=Z . 
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This simple criterion was used and appeared to be robust for the problem of swell-wind sea 
discrimination.  
 
The corresponding exponent Z appears to be slightly higher than 2/1−=Z , that implies a pumping of 
sea swell by wind-driven sea background [17]. This important issue is considered both in the context 
of methodology of obtaining VOS data and within the physics of the mixed sea.  This result contradicts 
to commonly accepted vision of sea swell as a neutral or slightly decaying fraction of ocean wave 
field. 
 
Prospects of further study are quite promising. In particular, satellite data are seen to be used for 
tracking ocean swell and for studies of physical mechanisms of its evolution. 
 

4. A new method for solving the exact nlS  in the energy balance equation 

One of the most challenging tasks in improving the wave forecasting models is solving accurately and 
in a reasonable time the collision integral in the energy balance equation (1). Here we present a new 
method for solving the collision integral in the Hasselmann equation that can be used in arbitrary 
depth. The method has in principle some advantages with respect to previously developed methods 
such as Resio-Tracy (RT) [14], Lavrenov (LAV) [15], Masuda (MAS) [16]: (i) the loci are straight lines 
instead of eggs-shaped in RT method; (ii) The calculation of the loci is exact and does not require 
iterative procedure; (iii) it does not require interpolation of the spectrum in the frequency domain, but 
just in angle (the interpolation is therefore 1D with respect to 2D  in RT, MAS and LAV); (iv) The MAS 
and LAV methods contain some singularities that have to be treated with some caution. The method 
presented here does not have singularities as the RT method. The collision integral is 
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The difference between all these methods is the way the δ -functions in frequency are removed. The 
methods RT, LAV and MAS remove the momentum δ -function by integration over wave vector. Then  
δ -function needs to be solved numerically. Here we follow different approach. First we are making 
transform to polar coordinates - the resulting integral is a multidimensional one - three integrals in 
wave numbers (modulus) and three in angles. Integration over two angles is then performed using the 
property of δ -unction and the resulting integral is transformed in angular frequency coordinates (three 
integrals in frequency and one in angle). After using the property of δ -function in frequency,  the 
integration  is removed and we come to the final result:  
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with 

 

Θ4 = Θ k4 − k1 cos(θ1) + k2 cos(θ2) − k3 cos(θ3)( )  where 

 

Θ is the step-function. A similar definition 
holds for 

 

Θ2. The numerical integration of nlS  consists in discretization of the above integral.  With 
respect to the RT method the loci over which we make the integration are straight lines. We give a 
number of graphical examples comparing the loci of integration for the RT method and the method 
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here developed. In Fig.4a we show the classical egg-shaped loci obtained from the RT method. In Fig. 
4b we show the respective loci in our domain of integration 
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Fig.4. a) Egg-shaped loci in the RT method. b) Loci in the new numerical method 
 
 
We developed new promising, in terms of accuracy and speed, method for solving Hsslmann equation 
nonlinear term. 

 
5. New canonical equation for one-dimensional surface waves 

 
We applied canonical transformation to the water wave Hamiltonian 
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The transformation removes not only cubic nonlinear terms, but simplifies drastically fourth order 
terms in the Hamiltonian: 
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b – is new normal canonical variable. This transformation explicitly uses the fact of vanishing exact 
four waves interaction for water gravity waves for 2D potential fluid. After the transformation well-
known but cumbersome Zakharov equation is drastically simplified and can be written in X-space in 
compact way. This new equation is very suitable for both analytic study and numerical simulation: 
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Also, this equation is convinient for experimentalists. The simplest solution of the equation is the 

monochromatic wave )00(
0=)( txkieBxb ω− with the frequency 2
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modulation instability is also calculated:  
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In the framework of this “improved” Zakharov equation we have performed numerical simulation of 
freak-wave formation from the initialy uniform water waves, see Fig.1  
 

 
 

Fig.5  |)(| xb  and ))(( xbRe . 
 
We developed simple new equation for 1D nonlinear surface waves, which is convenient for both 
theoretical study and numerical simulation of wave propagation in narrow experimental tanks. 
 
IMPACT/APPLICATIONS 
 

• Obtained results are expected to have significant impact on operational wave models through 
improved wind input term and, as a consequence, better prediction of ocean surface wave 
evolution.  

• Correct understanding of Hasselmann equation source terms balance will help to develop better 
theoretical estimates and approximations to the source terms.  

• Understanding of swell - wind sea interaction has to help to develop approximations to 
nonlinear source term and, as a result, build simplified theoretical and fast numerical models of 
nonlinear interaction of surface waves.  

• New method of numerical integration of Hasselmann equation will help to develop faster 
working operational wave prediction models.  
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• New one-dimensional nonlinear equation for surface waves will help to carry out more 
effective theoretical analysis for freak waves and faster numerical simulation of the processes 
of wave propagation in narrow experimental tanks.  
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