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LONG-TERM GOALS 

We put forth the idea of developing a statistical model representing the relationship 
between model parameters and macroscopic features in meteorological quantities, with the 
latter quantified in terms of measures commonly used in spatial verification methods. For 
example, if/when a spatial verification method suggests that frontal speed was forecast in
correctly, we would like to be able to set the model parameters (e.g., diffusion rate) to 
remedy that problem in some optimal sense. This primary goal requires the identification of 
relevant model parameters, which in turn requires performing sensitivity analysis (our sec
ondary goal). To validate the results of the variance-based sensitivity analysis, comparisons 
are made with a more traditional method based on adjoints. After the “important” model 
parameters are identified, an emulator will be developed. An emulator consists of a statis
tical model which represents the relationship between model parameters and macroscopic 
features (e.g., spatial structure) of forecast fields. Such an emulator (and its inverse) has 
both scientific value and practical utility. An example of the former is the knowledge gained 
from identifying the statistical relations between model parameters and forecast parameters, 
and model-tuning is an example of the practical utility. 
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OBJECTIVES 

1. Perform variance-based and adjoint sensitivity analysis of the Lorenz 1963 model, 
in preparation for application to COAMPS. The sensitivities are computed with respect to 
both initial conditions and model parameters, but only the latter are used as inputs to the 
emulator. 

2. Develop emulators to represent the complex, nonlinear relationship between model 
parameters and forecast features arising in spatial verification techniques. 

APPROACH 

The specific type of sensitivity analysis we have attempted to tailor to our needs is 
called variance-based sensitivity analysis (Saltelli 2010). We have applied the method to 
both COAMPS and the Lorenz 1963 model. Applying the method to a complex and a 
simple model at the same time has been fruitful in explaining some of our COAMPS results. 

The emulators we have developed (trained) thus far are still tentative, because the sen
sitivity analysis work is still in progress. We have tested polynomial regression and neural 
networks as emulation models, and they both seem to be adequate for the task at hand. 

The variance-based sensitivity analysis approach and the emulation method are closely 
tied (Oakley and O’Hagan 2004, Rouigier 2005). This connection between variance-based 
sensitivity analysis and model emulation is the main reason behind our approach, because 
it is the emulator which is ultimately used for model tuning. 

WORK COMPLETED 

Various objectives are being addressed in parallel. Both variance-based and adjoint 
sensitivity analysis of Lorenz 1963 has been done, but the comparison between them is 
not complete. The variance-based results for the Lorenz 1963 model and COAMPS were 
presented at a seminar at NRL on October 10, 2011. Emulators have been trained for both 
Lorenz 1963 and COAMPS, but they are all in developmental stage. 

We have initiated a collaboration with an expert in adjoint sensitivity analysis (Greg 
Hakim, University of Washington). We have discovered that in fact the variance-based and 
the adjoint method may be quite different in terms of their assumptions and goals, almost 
to the point of making a direct comparison very difficult (or nearly impossible). Through 
the collaboration with Greg Hakim, we hope to address this question of how to perform the 
comparisons. Thus far that work has focused on the Lorenz model. Although the Lorenz 
model is qualitatively different from COAMPS (because the Lorenz adjoint exists in ana
lytic form, but only a numerical solutions exists for the COAMPS adjoint), the comparison 
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of the two sensitivity analysis methods (variance-based vs. adjoint) on the Lorenz model is 
important for understanding the COAMPS results. 

RESULTS 

The Lorenz 1963 model is well-studied: State variables X, Y, Z are coupled to one another 
in a first-order (in time) differential equation, involving parameters s, r, b. To perform sensi
tivity analysis, one considers a reference trajectory denoted XR, YR, ZR, with respect to which 
perturbations δX, δY, δZ are introduced. The perturbations may be caused by uncertainty 
in the initial conditions (δX0, δY0, δZ0) or in the model parameters (δs, δr, δb). One question 
is to assess the manner in which the perturbations δX, δY, δZ depend on δX0, δY0, δZ0, and 
δs, δr, δb. Note that we are considering not only sensitivity to initial conditions, but also 
sensitivity to the perturbations (uncertainty) in the model parameters. 

We used a method developed by one of the pioneers of the adjoint method (Hall 1986); 
this formulation of the adjoint method has the virtue of allowing one to derive simple math
ematical expressions which can aid in understanding the complexity brought about by the 
nonlinear nature of the Lorenz model. Specifically, we have derived the equations for the 
time-average of the perturbations. For example, the time-average of δZ, over a period from 
0 to τ is  τ

δZ =
0 [v1(YR − XR) δs + v2XR δr + v3ZRδb ] dt (1) 

− v1(t = 0) δX0 − v2(t = 0) δY0 − v3(t = 0) δZ0 

The vi(t) are solutions to ⎛ ⎞ ⎛ ⎞ 
v1 0 

N ∗ ⎝ v2 ⎠ =
1 ⎝ 0 ⎠ , (2)
τ 

v3 1 

where N∗ is the matrix defining the adjoint of the tangent linear model; it is well-known and 
can be written in analytic form (not shown here). The adjoint solutions vi must satisfy the 
condition vi(t = τ) = 0. 

Solving the adjoint equation (2) “backward” in time gives vi(t = 0), which then, ac
cording the equation (1) are precisely the sensitivities with respect to initial conditions. 
Equation 1 also gives the sensitivities with respect to model parameters, namely the coeffi
cients of δs, δr, δb. These too involve the adjoint solutions, but integrated over time. 

The simple and explicit nature of this formulation is precisely what is required for com
paring it with the variance-based method. We are currently casting the variance-based 
method in a form that allows comparison with Eq. 1. One difference between the two meth
ods (which makes comparisons difficult) is that the variance-based method explicitly contain 
interactions between the various perturbations, whereas the adjoint method (1) does not. 

Turning to numerical/simulations (important for transitioning to COAMPS), Fig. 1 
shows the sensitivities defined above as a function of time. Apart from the variations in 
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time, the relative vertical displacement between the three curves in the left panel clearly 
shows that the three parameters have very different effects. By contrast, the sensitivities 
with respect to initial conditions (right panel) are initially different, but quickly approach a 
common value of zero. 

Figure 1. Left: Sensitivity of δZ to model parameters δs (black), δr (red), and δb (green). 
Right: sensitivity of δZ to initial conditions δX0 (black), δY0 (red), and δZ0 (green). The 
x-axis in both plots is time. 

Fig. 2 shows the same sensitivities, but as a function of the X and Z state variables of 
the model. One task at hand is to compare these results with those obtained via the adjoint 
code for the Lorenz 63 model. An example is shown in Fig. 3 (already produced by Greg 
Hakim as part of a class taught at the University of Washington). The sensitivity metrics 
used in the two analyses (the analytic method above, and that based on the adjoint code) are 
different because of the way the two methods compute sensitivity. For example, the metric 
in the latter is required to be a positive definite quantity, but no such restriction is required 
in the variance-based method.) We are currently working to use similar metrics in all the 
methods being compared. 

Figure 2. Same sensitivities as in Fig, 1, but as a function of the X and Z state variables.
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Figure 3. Sensitivity according to the adjoint code for the Lorenz 1963 model. Produced 
here with permission of Greg Hakim. 

IMPACT/APPLICATIONS 

The impact of our work on the Lorenz 1963 model is likely to be mostly of academic 
and scientific value. Its main purpose here is to guide the work on COAMPS. By contrast, 
the practical values of the sensitivity analysis of COAMPS and the emulator are likely to 
be significant. Together they allow one to assess the effect of model parameters on spatial 
forecast verification, and vice versa. As such, not only the effects of changing the parameters 
can be anticipated, but also desirable properties of forecasts can be assured (in some optimal 
sense) by tuning the parameters accordingly. 
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