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LONG TERM GOALS 
 
Development of accurate and fast advanced statistical and dynamical nonlinear models of ocean 
surface waves, based on first physical principles, which will improve and accelerate both long term 
ocean surface waves forecasts and prediction of strongly coherent events, such as freak waves, tsunami 
and wave-breaking.     
 
OBJECTIVES 
 
Finding of physically correct wind input term for Hasselmann equation, understanding of the balance 
of source terms in Hasselmann equation, investigation of the problem of interaction of different scales 
on the ocean surface (sea and swell), development of new water surface analytic models and methods 
of their solution.  
 
APPROACH 
 
Advanced analytical techniques: Hamiltonian formalism, self-similar solutions, analytic solutions of 
integral equations; numerical methods for solution of integral and pseudo-differential equations; 
comparison of analytic and numerical results with experimental data  
 
WORK COMPLETED 
 

• Confirmation of the new wind input term through the limited fetch numerical simulation 

• Analytical solution and its numerical confirmation for non-stationary Hasselmann equation 
without non-linear interaction term 

• Detection of swell feedback by sea background through theory and experimental data 

• Analytical and numerical proof of non-integrability of 2D free-surface hydrodynamics 

• New findings in mechanisms of the energy dissipation during wave breaking event 

 
RESULTS 
 
1. Confirmation of the new wind input term through the limited fetch numerical simulation 
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in the limited fetch situation can be reduced to 
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where x is the coordinate orthogonal to the shore and θ is the angle between individual wavenumber k 
and the axis x. 
 
Eq.(2) is somewhat difficult for numerical simulation, as it contains the singularity in the form of 
( ) 1cos −θ on the right-hand side. We overcame this problem of division by zero through zeroing  one 
half of the Fourier space of the system for the waves propagating toward the shore. Since  it is well–
known that the energy in such waves is small with respect to waves propagating in the offshore 
direction, such approximation is quite reasonable for our purposes. 
 
We are looking for wind input function in he form ),(),( θωεθωγ=windS  where )(),( 1 θαωθωγ fs+= . 
 
The same sort of self-similar analysis performed for the time domain situation (see [1]) can be repeated 
for the limited fetch one. The result of inserting the self-similar substitution 
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We found that in the fetch-limited case the wind forcing index s is similar to the time domain situation, 
and the wind forcing is given by (see [1]): 
 

)(2.0
3/4

0

θ
ω
ωω

ρ
ρ fS

water

air
wind 








= ,   



 ≤≤

=
otherwise  0

/2/2-for   cos
)(

πθπθ
θf   (3) 

,
10

0 u
g

=ω  3103.1 −⋅=
water

air

ρ
ρ  

 
 
To check the theoretical finding (3), the numerical simulation of the Eq.(2) has been performed for 

windS  input function (3), dissipation term dissS  similar to [3], where white-capping dissipation term was 

introduced implicitly through 5−f  (
π
ω
2

=f ) energy spectral tail stretching in frequency range from 

1.1=df  to 0.2max =f . 
 
Fig.1 presents characteristic spectral energy distribution for this  limited fetch simulation. 
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Fig.1:  Energy spectral density ),( θε f  as a function of f  and angle θ  in polar coordinates. 
 
Fig.2 presents the plot of the function 2/5)( kkF ⋅=β  in terms of the parameter 2/13/12 /)( gCu pλ  for two 
different runs, corresponding to the same wind speed 10u =10.0 m/sec: one for time domain simulation 
(see [1]), and another for limited fetch simulation. Both simulations show good correspondence with 
Resio et al. (2004) [2] regression line. 
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Fig.2: Two simulations for wind input 10u =10.0 m/sec: time-limited domain (triangles) and limited 
fetch (crosses). Dotted line – correlation of the equilibrium range coefficient β  with 2/13/12 /)( gCu pλ  

based on data from six disparate sources adopted from Resio at al, 2004 [2] . Dashed line – 
theoretical value of equilibrium range coefficient β . 

 
2. Analytical solution and its numerical tests for Hasselmann equation without nonlinear 

interaction 
 
The Hasselmann Eq.(1) includes essentially different physical processes' -- advection, nonlinear 
interaction and external forcing/damping. It is important to understand during numerical 
implementation of Hasselmann equation simulation that individual terms, responsible for particular 
physical process, work well. In this connection it's necessary to test each of them individually to be 
sure that discretization implementation errors do not overlap, creating wrongly working numerical 
code. 
 
As far as concerns nonlinear interaction term nlS , we can be sure that discrete implementation works 
quite well. Those tests include, in particular, numerical reproduction of analytical Komogorov-
Zakharov and self-similar solutions for time-limited formulation of Hasselmann equation without 
advection term [1], [4]. 
 
The question of testing of the advection part of Hasselmann equation (1) remained open so far. We 
managed to find specific analytic solution and show numerically that it is reproduced by the 
corresponding numerical code. 
 
We are starting with linear version of Hasselmann Eq.(1) stripped off the nonlinear interaction term 

nlS : 
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Eq.(5) has the following analytical solution: 
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which means that original Eq.(4) has the exact analytical solution 
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i.e. any initial condition in the spatial fetch point 0x , frequency ω  and angle θ is growing 

exponentially until it reaches critical value 
0cos

2 x
ge θ

ωγ
, and stays equal to that value thereafter. 

 
We performed numerical tests of the Eq.(4) with the help of "rectangle" numerical scheme, having 
second order approximation in space and time. Such scheme is unconditionally stable, and the only 
condition of its correspondence to the physical reality is temporal resolution of the exponential growth 

with increment γ , i.e time step of the numerical integration 
γ

τ 1
<< . This condition has to be taken 

into account for any full-blown numerical simulation of Hasselmann Eq.(1) to get physically sensible 
results. 
 
Fig.3 shows the results of numerical simulation of the Eq.(4): the initial condition is growing 
exponentially until it reaches critical value, and stays constant afterwards. 
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Fig.3:  Logarithm of 3 spectral energy modes, located in different parts of the fetch. In accordance 
with analytical solution (6), they grow exponentially until reach the critical value. 

 
Fig.4 shows total energy evolution as a function of the fetch and time and has important interpretation: 
negligence of the nonlinear interaction term leads to asymptotical stationary distribution of the wave 
amplitudes along the fetch. However, this distribution is exponential, and such distribution of energy 
has never been observed in the reality (the observed is the power one). Therefore, nonlinear term nlS  is 
at least absolutely necessary component of proper physical picture of the ocean wave surface. In fact, 

nlS  is the dominating source term in Hasselmann equation with respect to γ , as it was shown in [1]. 

 
 

Fig.4:  Total energy as a function of fetch and time 
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3. Detection of swell feedback by sea background through theory and experimental data 
 
The global visual wave observations are reanalyzed within the theoretical concept of self-similar wind-
driven seas. The core of the analysis is one-parameter dependencies of wave height on wave period. 
Theoretically, wind-driven seas are governed by power-like laws with exponents close to Toba’s one 
3/2, while the corresponding swell exponent (-1/2) has an opposite signature. This simple criterion was 
used and appeared to be adequate to the problem of swell and wind-driven waves discrimination. This 
theoretically based discrimination does not follow exactly the Voluntary Observing Ship (VOS) data. 
This important issue is considered both in the context of methodology of obtaining VOS data and 
within the physics of wind waves. The results are detailed for global estimates and for analysis of 
particular areas of the Pacific Ocean. Prospects of further studies are discussed. In particular, satellite 
data are seen to be promising for tracking ocean swell and for studies of physical mechanisms of its 
evolution. 
 
Fig.5 gives a graphical summary of four reference cases of self-similar evolution of wind-driven 
waves. These cases are shown as different R, tangents of one-parametric dependencies  

H~TR 
height-to-period in logarithmic axes. Reference cases of growing wind sea are shown as the young sea 
growth at permanent wave momentum production (exponent R = 5/3 by Hasselmann et al. 1976 [5]), 
growing Toba’s sea (R = 3/2) and old premature sea by Zakharov and Zaslavsky 1983 [6] with R = 
4/3. 

 
 

Fig. 5  Reference cases of wave growth as one-parametric dependencies Hs(Ts). Cases of Toba 
[1972] R = 3/2 law and swell with R = -1/2 are shown by bold lines. Domain where the asymptotic 

scheme is formally invalid (Badulin et al., 2007 [7]) is shaded. 
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Fig.6 Dependencies H(T) and their power law fits for the whole World Ocean, 1970–2007 for (top) 

wind waves and (bottom) swell. Lines marked as A, B, C, D show reference power laws of Fig.5. The 
exponents of the experimental fits R = 0.96 for wind sea and R = 0.54 for swell are found to be quite 

far from the reference cases. Totally, 36,356,695 reports have been used for wind waves and 
31,041,169 for swell observations. 

 
The height-to-period dependencies H(T) derived from the VOS data are shown in Fig.6 for visually 
delineated wind waves (upper panel) and swell (bottom panel). The difference of these two cases is 
clearly seen in terms of exponents R. Thorough analysis of the experimental data uncovers more 
physically significant difference of two sea waves extremes. Selecting waves in wave ages and, what is 
more important, in wave periods we found definite indications on pumping of swell. Results of such 
selection is illustrated by Fig. 7 where histograms of exponents R estimated for 20o by 20o coordinate 
boxes are given. While for the wind waves the histogram is localized near a value more than 1, for 
swell the corresponding distribution is quite large that implies a variety of physical mechanisms 
responsible for the swell dynamics. 
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Fig. 7  Histograms of exponents R of power law fits of H(T) dependencies calculated monthly for 
20x 20 boxes of the World Ocean (1481 dependencies of total 1782 = 8 x18x12 coordinate boxes) for 

special ranges of wave periods: (bottom) wind sea with T = 5–10 s and (top) swell with  
periods T = 10–20 s. 

 
With the exponent R as indicator of sea wave dynamics we make a conceptual step: we study a link of 
wave heights H and periods T rather than features of the independent data sets. The separate analysis 
basing on VOS (Gulev et al., 2004 [8]) or satellite data (e.g., Zieger, 2010 [9]) gives valuable 
information on ranges of wave parameters and their geographical variability, but propose quite 
primitive vision of wave dynamics. Recent attempts to combine satellite altimeter observations of 
wave heights and mathematical modeling of wave dynamics (Laugel et al., 2012 [10] ) propose 
reconstructions of full spatiotemporal structure of wind wavefield. This study is based on extensive 
simulations and requires thorough theoretical analysis. The interpretation of its results in the context of 
burning problems of sea wave physics shows a good prospect for further study. 
 
4. Analytical and numerical proof of non-integrability of 2D free-surface hydrodynamics 
 
We studied the problem of integrabily of 2D hydrodynamics of fluid with free surface in a gravity 
field. This conjecture was formulated in 1994. Here we studied the integrability for potential motion in 
the framework of Hamiltonian truncated equation up to the fourth order:  
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here ),( txη  is the shape of a surface, ),( txψ  is a potential function of the flow given at the surface and 
g  is gravitational acceleration. To simplify the Hamiltonian we applied canonical transformation 
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This equation has localized breather-type solution  
 ,)(=),( )00( txkieVtxBtxb ω−−  (10) 

where 0k  is the wavenumber of the carrier wave, V  is the group velocity and 0ω  is the frequency 
close to 

0kω . In the Fourier space breather can be written as follow:  

 ,=)( )(
k

Vkti
k etb φ+Ω−  (11) 

where Ω  is close to 2
0kω . This solution is stable and does not radiate. In the integrable systems 

collisions of such beaters must be ellastic. We performed numerical simulation of collisions of two 
breathers and have found that it is not pure ellastic, see Fig.8. 

 
 

Fig.8  Surface profile of two breathers. 
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Also we studied analytically coefficient of 6-waves interaction as a superposition of 4-waves 
interaction. For integrable system it must be equal to zero on the resonance manifold. However it was 
found that it does not vanish. So, both numerical and anaylical study allow us to conclude that 2-D free 
surface hydrodynamics is not integrable system.  
 
5. Dissipation of energy during the wave-breaking event 

 
One of the most challenging tasks in improving the wave forecasting models is to develop an 
appropriate dissipation source term. The wave breaking phenomenon is the most important source of 
dissipation of energy for waves. Recently if has been found that the modulational instability is in 
principle a good candidate to explain the wave breaking mechanism in deep and intermediate water 
depth. The main idea is that a wave packet, if sufficiently steep, may go through a modulational 
instability process by which a single wave grows at the expense of the other waves. If the limiting 
steepness is reached, then a wave breaking is observed. Normally, the modulational instability is 
studied, at the leading order, by the Nonlinear Schrodinger equation and its exact solutions. Numerical 
simulations of the fully nonlinear Euler equation have also been performed in the past; however, the 
major limitation of these approaches is that they fail to capture the final stages of the wave breaking 
mechanism, therefore they are not capable of furnishing any result which concerns the dissipation of 
energy. 

 
In the present work we have performed for the first time a direct numerical computation of the full 
Navier-Stokes equation for two-phase flow (air above and water below the surface) in order to study 
the wave breaking that results from the modulational instability mechanism. If the steepness of the 
initial wave is large enough, we observe a wave breaking, as shown in Fig.9, and the formation of large 
scale dipole structures in the air, see Fig.10. Because of the multiple steepening and breaking of the 
waves under unstable wave packets, a train of dipoles is released and propagate in the atmosphere at a 
height comparable with the wave length. The amount of energy dissipated by the breaker in water and 
air is considered and, contrary to expectations, we observe that the energy dissipation in the air is 
larger than the one in the water, see Fig.11. 
 

Fig.9 wave breaking during the modulational instability process 
 

 
Fig.10  Dipole formation during  wave breaking 
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Fig.11 Dissipation of energy during multiple breaking events. Dashed line corresponds to 
dissipation in air and solid line to dissipation in water. 

 
This result is somehow counter intuitive: most of the experimental research so far have measured 
dissipation due to wave breaking by looking at the dissipation of kinetic energy in the water. Possible 
consequences on the wave modeling of dissipation source term and on the exchange of aerosols and 
gases with the atmosphere are under investigation.  
 
IMPACT/APPLICATIONS 
 

• Confirmation of the correctness of proposed new wind input term for limited case situation 
should improve operational forecasting models 

• New analytic solution for Hasselmann equation without nonlinear term will help to test 
operational models against correctness of the physics of described phenomena  

• Detection of swell feedback by sea background through theory and experimental data helps to 
understand complex nonlinear mechanisms of different scales surface waves interaction in the 
ocean 

• Analytical and numerical proof of non-integrability of 2D free-surface hydrodynamics will help 
to build simplified and fast nonlinear models of surface waves 

• Discovery of large-scale dipole structures in the air appearing due to wave-breaking might alter 
current presentation of dissipation source terms in operational models  

 
RELATED PROJECTS 
 
None 
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