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LONG-TERM GOALS  
 
The long-term goal is to develop a nonhydrostatic, parallel ocean simulation tool that is capable of 
simulating processes on a wide range of scales through use of accurate numerical methods and high-
performance computational algorithms. The tool will be applied to study highly nonlinear internal 
waves in coastal domains to develop an improved understanding of mechanisms that govern their 
generation, propagation, and dissipation. 
 
OBJECTIVES  
 
The primary objective is to enhance the capabilities of the SUNTANS model through development of 
algorithms to study multiscale processes in estuaries and the coastal ocean.  This involves development 
of 1) improved momentum and scalar advection on unstructured, staggered grids, 2) accurate and 
efficient algorithms for solution of the nonhydrostatic pressure, and 3) adaptive grid capabiliites with 
adaptive mesh refinement and model nesting. 
 
APPROACH  
 
This work focuses on the continued development of SUNTANS (Stanford Unstructured 
Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator), a free-surface, nonhydrostatic, 
unstructured-grid, parallel coastal ocean and estuary simulation tool that solves the Navier-Stokes 
equations under the Boussinesq approximation (Fringer et al.,2006). The formulation is based on the 
method outlined by Casulli and Walters (2000), in which the free-surface and vertical diffusion are 
discretized with the theta method which eliminates the Courant condition associated with fast free-
surface waves and the elevated friction term associated with small vertical grid spacing at the free-
surface and bottom boundary.  For flows with extensive wetting and drying, advection of momentum is 
accomplished with the semi-Lagrangian advection scheme (Wang et al. 2011a), which ensures stability 
in the presence of cells that fill and empty with the tides.  Scalar advection is accomplished semi-
implicitly and continuity of volume and mass are guaranteed for the hydrostatic solver.  The theta 
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method for the free surface yields a two-dimensional Poisson equation, and the nonhydrostatic 
pressure is governed by a three-dimensional Poisson equation. These are both solved with the 
preconditioned conjugate gradient algorithm with Jacobi and block-Jacobi preconditioning, 
respectively. Because the nonhydrostatic component of SUNTANS is essentially a correction to the 
hydrostatic component, SUNTANS can be run seamlessly in nonhydrostatic or hydrostatic modes. 
SUNTANS is written in the C programming language, and the message-passing interface (MPI) is 
employed for use in a distributed-memory parallel computing environment.  SUNTANS employs the 
generalized length scale approach to Reynolds-averaged turbulence modeling (Wang et al. 2011b).   
The SUNTANS grid employs z-levels in the vertical and is unstructured in plan, which enables the 
resolution of complex coastlines and topographic features.  Unstructured grids also enable the use of 
high grid resolution in regions of interest while coarsening the grid in regions where grid resolution is 
not required, thereby significantly reducing computational overhead.   
 
WORK COMPLETED  
 
We have completed the development of a nonhydrostatic isopycnal-coordinate model and have 
performed simulations to study the nonlinear effects of internal wave generation over an idealized 
Gaussian ridge.  We have also performed high-resolution simulations of breaking internal waves on 
slopes and computed mixing and dissipation.  Below results are presented for the isopycnal-coordinate 
model and the internal wave generation. 
 
RESULTS  
 
Nonhydrostatic isopycnal-coordinate modeling 
 
We have nearly completed a manuscript reporting the formulation and testing of a nonhydrostatic 
isopycnal coordinate ocean model, which to our knowledge represents the first of its kind.  The 
motivation for this model comes from the success and efficiency of traditional (hydrostatic) isopycnal-
coordinate models.  Isopycnal coordinates naturally represent a stratified fluid, which in turn reduces 
the number of grid points from O(100) grid points in traditional ocean models (as in Zhang et al. 2011) 
to O(1) grid points.  This represents a significant reduction in computational effort.  Traditional 
(hydrostatic) isopycnal-coordinate models have been applied to simulating internal waves in the South 
China Sea (Simmons et al. 2011).  However, hydrostatic models don’t compute physical dispersion 
and thus modeled solitary waves are non-physical (they arise from a balance between nonlinearity and 
spurious numerical dispersion, as discussed in Vitousek and Fringer 2011).  We have developed a 
nonhydrostatic isopycnal-coordinate ocean model to overcome this limitation and to allow the 
formation of solitary waves with an isopycnal coordinate formulation.  Ideally, in locations where the 
internal wave structure is predominantly mode-1, an isopycnal model with just two layers may suffice. 
 
Our nonhydrostatic isopycnal-coordinate model is intended to be flexible (using an arbitrary number of 
layers) and straightforward (resembling existing ocean models).  We employ a second-order accurate 
(in space and time) finite-difference/finite-volume formulation on a staggered C-grid as in traditional 
isopycnal-coordinate models.  However, our model uses an implicit free-surface discretization based 
on the IMEX multistep methods of Durran and Blossey (2012) rather than traditional mode-splitting.  
We note that implicit free-surface discretizations are more commonly used in nonhydrostatic ocean 
models.  Our model uses the MPDATA algorithm (Smolarkiewicz and Margolin 1998) to handle 
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wetting and drying of isopycnal layers.  The model solves the nonhydrostatic pressure Poisson 
equation using either the preconditioned conjugate gradient method or the multigrid algorithm with 
semi-coarsening in the horizontal and line relaxation in the vertical, a strategy that performs well for 
solving anisotropic elliptic equations (Briggs et al. 2000). 
 
Idealized test cases show that the model is capable of resolving dispersive wave properties and the 
formation of nonlinear internal solitary waves.  Figure 1 shows some of the arbitrary layer 
configurations that can be used in the model, while Figure 2 shows the dispersive properties of the 
hydrostatic and nonhydrostatic isopycnal models which are validated against linear theory.  These 
results suggest that nonhydrostatic effects require more layers even if the stratification is uniform in 
order to resolve depth-variability associated with nonhydrostatic effects.  Figure 3 shows the 
comparison of the formation of nonlinear internal solitary waves in the SUNTANS (z-level model; 
Fringer et al. 2006) to the nonhydrostatic isopycnal model with 2 and 10 layers.  This test case 
demonstrates that the nonhydrostatic isopycnal model is capable of representing the formation and 
propagation of solitary waves.  Finally, we demonstrate that, although the model represents a discrete 
set of layers, it is capable of simulating internal wave behavior in continuously stratified systems.  
Figure 4 shows a nonhydrostatic isopycnal simulation of oscillatory flow in a continuously stratified 
fluid over a Gaussian sill.  This depth perturbation induces the generation of internal wave beams 
which radiate away from the sill at an angle that agrees well with the linear theory. 

 
Figure 1: The arbitrary layer configuration used in the nonhydrostatic isopycnal models.   

Panels A,B and C depict a free surface seiche, panels D,E and F depict a 2-layer internal seiche  
and panels G,H and I depict an internal seiche with a hyperbolic tangent density profile with 

varying number of layers. 
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Figure 2: Modeled wave speed normalized by the true wave speed for the hydrostatic (red) and 
nonhydrostatic (blue) models as a function of aspect ratio (kH) for the free surface, 2-layer and 

smoothly stratified internal seiche shown in panels A,B and C, respectively.  These correspond to 
columns A, B, and C in Figure 1. 

 
Figure 3: Comparison of the formation of nonlinear internal solitary waves in the SUNTANS z-

level model (Fringer et al. 2006) to our nonhydrostatic isopycnal model with 2 and 10 layers.  This 
test case is based on a numerical experiment in Vitousek and Fringer (2011). 



5 
 

 
Figure 4: The velocity perturbation (u′=u-U) calculated by the nonhydrostatic isopycnal  

model as induced by an oscillatory flow in a constantly stratified fluid over a Gaussian sill.   
Internal wave beams radiate away from the sill at an angle that agrees with linear theory.   
We note that the magnitude of the velocity perturbation (and the forcing velocity) is kept  

small so that linear theory is valid. 
 
Nonlinear and nonhydrostatic internal tide generation 
 
The problem of internal tide generation has conventionally been defined by three dimensionless 
parameters, namely the tidal excursion parameter (ε2 = tidal excursion/ horizontal topographic scale), 
the criticality parameter (ε1 = topographic slope/Internal wave beam slope), and the nondimensional 
obstacle height (δ = topographic height/total water depth). These parameters are sufficient to describe 
the problem in the linear limit (ε2 << 1), and analytical solutions under this approximation require 
additional limitations of either ε1 << 1 or δ << 1 or both. Recent advancements in analytical models 
using Green’s functions have eliminated these additional limitations.  For example, the iTides model 
of Echeverri and Peacock (2011) does not require the assumptions of small ε1 or δ, although a small 
excursion parameter is still required.  Because previous studies have largely been based on linear 
theory with the aforementioned limitations, nonlinear and nonhydrostatic effects on radiated energy 
flux are largely unexplored.   
 
We carry out two-dimensional, high-resolution simulations using the SUNTANS model to study 
nonlinear and nonhydrostatic effects for realistic oceanic flows with ε2 ~0.03-0.3. The topography 
consists of an idealized Gaussian ridge centered at x=0 of the form 
 

, 
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where h0 is the ridge height and σ is the width of the Gaussian.  The domain is forced with a barotropic 
pressure gradient oscillating at the M2 tidal frequency (ω = 1.41×10-4 rad/s). The total water depth is  
H = 1000 m and the initial background buoyancy frequency is uniform at N = 0.005 rad/s. We employ 
a quadrilateral grid (SUNTANS can employ quadrilaterals or triangles or both), and the finest 
horizontal resolution is employed over the ridge with  ∆x= 200 m and linear stretching is employed 
such that the resolution near the boundaries is ranges from 1400 m to 6000 m (where 6000 m 
corresponds to the subcritical slope with ε1=0.5 and 1400 m is the highest resolution at the boundaries 
and corresponds to supercritical slopes with ε1> 1.75). A total of 50 grid points is used to discretize the 
vertical direction and 3800 to 12000 points are employed in the horizontal (the highest number of grid 
points are used for the case with ε1=0.5), the time step size is ∆t=10 s, and the total simulation time is 
10 tidal periods.  We investigate the effect of the criticality parameter varying from subcritical to very 
supercritical slopes and the nondimensional height parameter on the radiated energy flux for values of 
the excursion parameter ranging from linear to nonlinear flows. The tidal excursion parameter is 
defined by ε2=u0/(ω σ), where u0 is the barotropic current in deep water away from the ridge, and we 
vary u0 but keep ω and σ fixed.  The ridge height is chosen to be h0=750 m which implies a tall ridge 
with δ = 0.75 and is representative of areas with intense internal tide generation like the Luzon Strait in 
the South China Sea (e.g. Buijsman et al. 2011) and Kaena ridge at Hawaii (e.g. Carter et al., 2008).  

 
We analyze the variation of the linear baroclinic energy flux (i.e. depth-integrated and time-averaged 
p’u’) as a function of the criticality parameter. In the figures, the theoretical flux is obtained with the 
iTides model (Echevery and Peacock, 2010), and results from the linearized and hydrostatic 
SUNTANS model are also computed for comparison. All results are normalized by the theoretical 
maximum energy flux which is given by the knife-edge result of St. Laurent et al. (2003) that occurs in 
the limit ∞→2ε for finite δ.  To obtain linear, hydrostatic SUNTANS results, the nonhydrostatic 
pressure in SUNTANS is eliminated and the nonlinear terms in the momentum equation are ignored.  
In the density equation, the nonlinear terms are eliminated to yield the linear density equation 
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where w is the vertical velocity, ρ0 is the reference density, and g is the gravitational acceleration.   
 
As shown in Figure 5, the iTides and linear SUNTANS results agree for all values of ε1 and ε2, 
implying that, as expected, both models produce the same results independent of ε2.  However, 
increasing the excursion parameter (right-to-left tiles in Figure 5) produces marked deviation between 
the nonlinear and nonhydrostatic SUNTANS result and iTides, particularly in the near-critical range ε1  
= 0.75-1.75.  Figure 6 shows the ratio of the energy flux computed by the nonlinear and nonhydrostatic 
SUNTANS model to the linear result computed by iTides, and indicates that there is a minimum in the 
radiated energy flux when the slope is near-critical.  When the slope is exactly critical, nonlinear 
effects induce a drop of 85% in the radiated energy flux. 
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Figure 5: Comparison of three different models and how they compute the effect of the criticality 
parameter ε1 on the baroclinic energy flux radiating from a Gaussian ridge for three different 

excursion parameters (left: ε2=0.03, middle: ε2=0.1; right: ε2=0.3) when δ=0.75.  The energy flux is 
nondimensionalized by the knife-edge energy flux from St. Laurent et al. (2003). 

 

 
 

Figure 6: Ratio of nonlinear energy flux radiating from a Gaussian ridge to the linear energy flux 
computed by iTides as a function of the criticality parameter ε1 when ε2=0.3 and δ=0.75. 

  
Figure 7 shows that the drop in energy flux for large excursion parameters and near-critical slopes 
depends to great extent on the height of the ridge.  Both the nonlinear and nonhydrostatic SUNTANS 
model and the iTides model predict a drop in the energy flux with increasing ridge height (with ε1 and 
ε2 fixed).  Because the iTides model employs a nonlinear kinematic boundary condition at the bottom 
boundary, it is valid for flows with arbitrary ε1 and δ, as long as ε2<<1.  Therefore, the drop in energy 
flux for large ridge heights predicted by the iTides model is related to nonlinear and inviscid 
topographic boundary effects and not nonlinear effects within the flow itself or viscous boundary 
effects such as those that give rise to the nonlinear energy flux terms (e.g. Kang and Fringer 2012) or 
to breaking and dissipation.  These flow-induced nonlinear effects give rise to further losses in the 
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energy flux as indicated by the lower energy flux computed by the SUNTANS model as compared to 
iTides.   
 
The relative effects of nonlinearity within the flow to those computed by iTides can be understood 
from Figure 8, which shows a plot of the ratio of the SUNTANS-computed energy flux to that 
computed by iTides.  As the ridge height increases, the relative impact of nonlinearity within the flow 
on the energy flux increases.  When δ=0.75, the flux computed by SUNTANS is only 25% of that 
computed by iTides.  Because the iTides model produces a decreased energy flux for large δ, it is clear 
that much of the reduction in energy flux with increased δ is not a result of an increase in the nonlinear 
energy flux terms of Kang and Fringer (2012).  We hypothesize that the reduction is due to redirection 
of barotropic energy to generation of boundary currents for taller ridges which results in a lower 
conversion of barotropic-to-baroclinic energy flux.  Following the work of Winters and Armi (2013), 
we are studying the problem in terms of newly defined inner flow variables which more accurately 
represent the strongly nonlinear flow over the ridge, rather than the outer flow variables ε1, ε2, and δ 
that were used in this study as well as throughout the literature on internal wave generation. 

 
 

 
Figure 7: Effect of the nondimensional ridge height δ on the energy flux radiated from a Gaussian 
Ridge with ε1=1 and ε2=0.3 as computed by the linear iTides model and the SUNTANS model.  The 

energy flux is normalized by the maximum knife-edge value from St. Laurent et al. (2003). 
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Figure 8: Effect of the nondimensional ridge height δ on the ratio of the energy flux radiated  
from a Gaussian Ridge as computed by SUNTANS to that computed by the iTides model  

with ε1=1 and ε2=0.3. 
 
IMPACT/APPLICATIONS  
 
High-resolution simulations using nonhydrostatic models like SUNTANS are crucial for understanding 
multiscale processes that are unresolved, and hence parameterized, in larger-scale ocean models.  
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