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LONG-TERM GOALS 

The Bayesian Hierarchical Model (BHM) methodology is exploited to identify, characterize, and 
model the irreducible model error in ocean data assimilation and forecast systems. 

OBJECTIVES 

We describe 4 objectives addressed in the fiscal year October 2012 - September 2013. 

First, we seek to extend the proof-of-concept results comparing a BHM surface wind ensemble 
with the increments in the surface momentum flux control vector in a four-dimensional 
variational (4dvar) assimilation system. The current objective is to convert BHM surface wind 
realizations to create an ensemble of surface stress vectors. 

Second, continuing the effort to understand irreducible model error induced by representing the 
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ocean state vector on a discrete grid, the current objective is to estimate the Hellinger distance 
between posterior distributions described in the next section. 

Third, we have extended the hierarchical models for stochastic time-varying error-covariance 
matrices associated with data assimilation to include the case where both the observation and 
background error covariances are updated, yet dependent upon each other. 

Fourth, we have extended the emulator-assisted data assimilation methodology by extending the 
parameterization of the spectral quadratic nonlinear spatio-temporal models to accommodate the 
inclusion of nonlinear interactions from small scales to inform the evolution of large scale modes. 

APPROACH 

Converting Surface Wind Realizations to a Surface Stress Ensemble: Sea-level pressure (SLP) 
and surface air and dew point temperature fields (Ta and Td , respectively) for the Mediterranean 
Sea were obtained from collaborators (Prof. Nadia Pinardi) at Istituto Nazionale di Geofisica e 
Vulcanologia (INGV) in Bologna. These fields are used with ensemble winds from the BHM due 
to Milliff et al. (2011) to derive ensemble surface stress realizations as outlined in the flowchart 
shown in Figure 1. 

Model Error Arising from a Discrete Grid: Let the parameter θ denote the ocean state (velocities 
and diffusion coefficients) in a deep layer in the South Atlantic, as shown in Figure 2. Define two 
posterior distributions as follows: 

•	 p(θ |Ỹ ) –which we call model M̃. Here the data Ỹ are tracer concentration measurements 
which have been averaged to the nearest site on a regular spatial grid (Fig 2); and 

•	 p(θ |Y ) – which we call model M. Here the data Y are tracer concentration measurements 
available at the original spatial locations (Fig 2). 

The Hellinger distance between the two posterior distributions is defined as 
�

1 
�2
 

H = 
� ��

p(θ |Ỹ ) − 
�

p(θ |Y ) dθ

2 

Obtaining an estimate of H gives us a measure of discrepancy between the two models M̃ and M. 

We work under the assumption that model M̃ can be explored efficiently via Markov-Chain 
Monte Carlo (MCMC) methods and that model M can be explored via parallel computing. We 
derive a Monte Carlo estimate of H which requires the following components: 

(i) A MCMC exploration of model M̃ ; Assume θ1,θ2, . . . θB represents a Markov chain which 
explores the target p(θ |Ỹ ). 

(ii) An evaluation of the un-normalized posteriors p(θi|Y ), i = 1, . . . , B which can be obtained 
efficiently via parallel computing; 

(iii) An estimate of p(θ ∗|Ỹ ) and p(θ ∗|Y ) at one single user selected value θ ∗ . 
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Figure 1: Flow chart demonstrating path from input analysis fields to specific humidity and 
atmospheric density approximations. These are combined with estimates for drag coefficient and surface 

wind speed given ensemble winds from a Bayesian Hierarchical Model to provide surface momentum 
flux ensembles. 
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Figure 2: Domain of interest : squares indicate spatial locations where tracer concentration 
measurements are available; circles indicate a regular 19 × 37 spatial grid. 

Time-Varying Error Covariance Models: Extending the time-varying covariance methodology 
described in Dobricic et al. (2013), we consider modeling the simultaneous evolution of the 
background and observation error covariance matrices of a spatial field for use in data 
assimilation. In this context, there are two sources of data, one corresponding to historical model 
misfits (related to the background error covariance) and one associated with in situ observations, 
such as those from ARGO floats in the ocean. Critically, both covariance matrices are conditioned 
on a common reduced-dimensional covariance structure whose elements are allowed to evolve in 
a Markovian fashion through a Cholesky decomposition formulation. Although both the 
background and observation error covariance matrices are conditioned on this common 
time-varying low-rank matrix, the overall structure is somewhat different between them because 
the low-rank matrix gets transformed differently. This allows common structure but allows one to 
capture the scale variations between the two types of error processes. 

Emulator Assisted Data Assimilation: We are interested in reduced-rank parametric emulators 
for non-linear spatio-temporal error processes. We allow the spatial process at time t (say, Yt ) to 
be decomposed in terms of two basis expansions: 

Yt = Φ(1)
α t + Φ(2)

β t + ν t , 

where Φ(i), i = 1,2 correspond to n × p and n × q matrices containing large-scale and small-scale 
basis functions, respectively. Then, α t and β t correspond to vectors of large-scale and small-scale 
expansion coefficients of lengths p and q, respectively, and ν t an error process assumed to be 
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independent of α t and β t . Our primary interest is in the evolution of the large-scale coefficients 
given by α t , as it is often the case in real-world processes wherein the important dynamics exist 
on a lower-dimensional manifold. Critical to our model development is allowing the propagation 
of α t to α t+τ (where τ ≥ 1) to be influenced by the small-scale coefficients β t but not allowing α t 
to influence β t+τ directly in the dynamical formulation. This provides a physically realistic way 
in which to reduce the parameter space in the rank-reduced general quadratic nonlinearity (GQN) 
formulation (e.g., Wikle and Hooten, 2010; Leeds et al. 2013). Specifically, we consider the 
following model for the evolution of α t 

α t+τ = Mα α t + (Ip ⊗ G (α t )
�)Mα,Qα t + Mβ ,Lβ t + (Ip ⊗ G (β t )

�)Mβ ,Qβ t + η t+τ , (1) 

for t = 1, . . . , T and some appropriate time increment τ , where η t ∼ Gau(0,Qα ), Mα corresponds 
to the linear evolution of coefficients for the α t process, Mα,Q corresponds to the nonlinear 
evolution coefficients for the α t process, Mβ ,L corresponds to the linear interactions between β t 
and α t+τ , Mβ ,Q corresponds to the nonlinear interactions between β t and their impact on α t+τ , 
and Qα is a p × p covariance matrix. Note that Mα and Mβ ,L are p × p and p × q matrices while 
Mα,Q and Mβ ,Q are p2 × p and pq × p matrices. Though we may consider a variety of 
transformation functions G (·), for the applications of interest in our DA examples, it is reasonable 
to specify this function be the identity and hence define G (α t ) ≡ α t (similarly for β t ). A major 
challenge in the implementation of this methodology is the development of efficient sampling 
algorithms. 

WORK COMPLETED 

Converting Surface Wind Realizations to a Surface Stress Ensemble: Codes have been developed 
to follow the progression toward a surface momentum flux (e.g. surface stress vector) ensemble 
following Fig 1 using the analysis fields provided by INGV. Figure 3 depicts the intermediate 
output stages up to the surface density (ρa) calculation. 

Following Large (2006) we approximate the surface drag coefficient as noted in Fig 1. The 
coefficients ai; i = 1,2,3 can be treated as random variables to be estimated in the BHM. This 
enhancement is left for later work. For now, we use the ensemble winds from the BHM due to 
Milliff et al. (2011) and convert each surface vector wind realization to a surface momentum 
stress realization according to the flowchart in Fig 1. 

Model Error Arising from a Discrete Grid: We have implemented and tested this approach on a 
series of examples where the Hellinger distance can be computed analytically. We are currently 
implementing this approach for a synthetic example in which the forward model is approximated 
via a first order emulator (see Hooten et al., 2011). We are also implementing this approach for 
the oceanographic tracer inversion problem described in Herbei and Berliner, (2012). 

Time-Varying Error Covariance Models: The time-varying error covariance methodology for 
simultaneous estimation of background and observation error covariance matrices has been 
implemented in several simulated examples and with an application associated with data 
assimilation in the Mediterranean Sea (e.g., see Dobricic et al. 2013). This has been written-up as 
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Figure 3: Input analysis fields from ECMWF via INGV for 29 November 2008 at 1200 UTC. The top 2 
panels are atmospheric temperature and dew point temperature at 2m, in ◦K. The third panel is sea level 

pressure in hPa. These fields are combined to estimate atmospheric density (bottom panel) in kg m−3 . 
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a chapter in the dissertation of Dan Gladish (U. Missouri) and is in the process of being turned 
into a paper for publication. 

Emulator Assisted Data Assimilation: The development of the scale-interaction GQN model is 
outlined in a chapter in the dissertation of Dan Gladish (U. Missouri) and will be submitted in 
early October to a special issue of the journal Environmetrics that is focused on 
physical-statistical modeling in the environmental sciences. 

Relevant Meetings and Presentations: 

(Wikle) Invited;, Hierarchical general quadratic nonlinear models for spatio-temporal dynamics.
 
Red Raider Conference, Texas Tech University, Lubbock, TX, October 2012.
 
(Wikle) Invited; Efficient time-frequency representations in high-dimensional spatial and
 
spatio-temporal models. Invited Talk, ASA ENVR Workshop on Environmetrics, North Carolina
 
State University, October 2012.
 
(Herbei, Berliner) Poster; Estimating ocean-circulation: a likelihood-free approach via a
 
Bernoulli factory. Institute for Mathematics and its Applications, Workshop on Stochastic
 
Modeling of the Ocean and Atmosphere; U. Minnesota, March 2013.
 
(Milliff) Invited; Uncertainty in Ensemble Ocean Forecasts; Deducing Ocean Model Error with
 
Ensemble Winds from a Bayesian Hierarchical Model, Institute for Mathematics and its
 
Applications, Workshop on Stochastic Modeling of the Ocean and Atmosphere; U. Minnesota,
 
March 2013.
 
(Wikle) Invited; Using quadratic nonlinear statistical emulators to facilitate ocean biogeochemical
 
data assimilation, Institute for Mathematics and its Applications, Workshop on Stochastic
 
Modeling of the Ocean and Atmosphere; U. Minnesota, March 2013.
 
(Wikle) Invited; Statistics and the environment: Overview and challenges. 41st Annual Meeting
 
of the Statistical Society of Canada, Edmonton, Alberta, Canada; May 2013.
 
(Wikle) Invited; Nonlinear Dynamic Spatio-Temporal Statistical Models. Southern Regional
 
Council on Statistics Summer Research Conference; June 2013.
 
(Milliff) Invited; Bayesian Hierarchical Model Applications in Ocean Forecasting, Society for
 
Industrial and Applied Mathematics, Annual Meeting Minisymposium on Uncertainty
 
Quantification in Climate Modeling and Prediction; San Diego, CA, July 2013.
 
(Milliff) Invited; A Tale of Two Bayesian Hierarchical Models, IMAGe 2013 Climate Analytics
 
Theme-of-the-Year Workshop; Next Generation Climate Data Products; July 2013.
 
(Herbei) Exact MCMC Using Approximations, Joint Statistical Meetings, Montreal, CANADA;
 
August, 2013.
 
(Wikle) Invited Keynote Lecture;, Nonlinear dynamic spatio-temporal statistical models. Third
 
Workshop on Bayesian Inference and Latent Gaussian Models with Applications, Reykjavik,
 
Iceland, September 2013.
 

RESULTS 

Converting Surface Wind Realizations to a Surface Stress Ensemble: Sample surface momentum 
flux ensembles are shown for a snapshot in the western Mediterranean Sea in Figure 4. As noted 
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Figure 4: Sample surface momentum flux vectors at 1200 UTC on 29 Nov 2008. Ensemble �τ are 
obtained as summaries of ensemble winds from a BHM (Milliff et al., 2011), given input surface and 2m 

analysis fields. 

in the progress report from last year, ensemble surface wind stress estimates from the BHM can 
be used to diagnose loci of potential model error in 4dvar ocean data assimilation systems. If the 
iterations in the strong-constraint 4dvar between forward and adjoint models shifts the surface 
flux control vector outside the probabilistic ensemble estimated in the BHM, there is the 
possibility that the control vector variable is being used to correct for model error rather than 
forcing error. This was demonstrated for the California Current System ROMS 4dvar forecast 
system due to Prof. Andrew M. Moore and colleagues. 

Our next focus will be on similar BHM ensemble developments for the other variables comprising 
the forcing part of the control vector in ROMS 4dvar; e.g. surface heat and fresh-water fluxes. 

Model Error Arising from a Discrete Grid: Our initial tests show that the estimate we propose 
worked well in all cases. We are currently running simulations for the oceanographic tracer 
concentration inversion. 

Time-Varying Error Covariance Models: We have preliminary results for an application in the 
Mediterranean Sea, which uses the data described in Dobricic et al. (2013). This is currently in a 
draft chapter of Dan Gladish’s dissertation (U. Missouri), the final version of which will be 
submitted in November, 2013. At that time, we expect to finish converting the chapter to a paper 
for submission. 

Emulator Assisted Data Assimilation: We have preliminary results for an application to 
long-lead sea surface temperature prediction in the tropical Pacific ocean, as well as 6-24 hour 
forecasts of SLP over the midwest USA. These currently reside in a draft chapter of Dan 
Gladish’s dissertation (U. Missouri), the final version of which will be submitted in November, 
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2013. We are in the process of converting this chapter to paper for submission to a special issue of 
Environmetrics in early October 2013. 

IMPACT/APPLICATIONS 

Our research thus far, demonstrates the wide scope of applicability of the BHM methodology in 
characterizing, identifiing and modelling irreducible model error in ocean forecast systems. Our 
work is leading to operationally useful estimations of the space-time properties of uncertainties in 
these systems. 

TRANSITIONS 

Presentations and discussions at the Bayesian Confab meeting in Boulder, 31 July - 2 August 
2013, focused on Irreducible Model Error issues. 

RELATED PROJECTS 

“Estimating Ecosystem Model Uncertainties in Pan-Regional Syntheses and Climate Change 
Impacts on Coastal Domains of the North Pacific Ocean”, NSF US Globec Program, October 
2009 - September 2012. 

“Quantifying the Amplitude, Structure and Influence of Model Error during Ocean Analysis and 
Forecast Cycles”, ONR Physical Oceanography Program, A. Moore (PI). 

“Ocean Surface Vector Winds in Multi-Platform Bayesian Hierarchical Model Applications”, 
International Ocean Vector Winds Science Team, NASA Physical Oceanography Program, R. 
Milliff (PI). 

”Bayesian Hierarchical Climate Prediction”, NSF, April 2011 - March 2014, C.K. Wikle and 
L.M. Berliner (PIs) 
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