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LONG-TERM GOALS 
 
Estimation of seabed geoacoustic parameters in shallow water by acoustic remote sensing remains a 
challenging task due to constraints on hardware, data collection and analysis, and cost of maritime 
surveys. This work focuses on the application of two techniques that might offer a solution to those 
constraints: the use of ambient noise to probe the seabed, and Bayesian inversion of these data to 
estimate geoacoustic parameters of interest together with their uncertainties. The long-term goal of this 
work is to establish general methods for processing and inverting ambient noise data and assessing the 
quality of the results by quantifying their uncertainties.  
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OBJECTIVES 
 
This work has three main objectives: First, quantifying the ability to resolve seabed geoacoustic 
parameters using ambient noise measurements. Second, comparing those estimates to the ones 
obtained from active source inversion methods. Third, increasing the understanding of the 
experimental conditions and equipment required for the collection of ambient noise data suitable for 
geoacoustic inversion.  
 
APPROACH 
 
Traditional investigation of seabed sediment properties has relied heavily on direct measurements, such 
as core sampling and geo-probes, or indirect measurements with active systems. Direct methods have 
the evident problem of lack of spatial resolution due to time/cost constraints, while active methods can 
be limited due to deployment procedures and environmental concerns, often requiring the use of a 
vessel to tow the active device over a geographic area of interest. As alternative to active systems, it is 
known that the wind-driven ambient noise field recorded at a vertical array carries information of the 
seabed layering structure,1 which is exploited in this research. The approach for this work consists of: 
 
1) Defining an inversion method: the Bayesian framework has been selected in this study to carry out 
geoacoustic inversion from ambient noise data. The work by Dettmer and Dosso3-4 (University of 
Victoria) and Holland (Pennsylvania State University) on Bayesian controlled-source reflection 
coefficient inversion is directly applicable to the proposed inversion of similar data as extracted from 
the ambient noise field.5  
 
2) Implementing algorithms for numerical estimation of the posterior probability density (PPD) over 
the geoacoustic parameters of interest: Since analytical solutions for the PPD are generally not 
available for non-linear problems, Markov chain Monte Carlo (MCMC) methods are used to sample 
from this distribution.4 In this work, Metropolis-Hastings sampling (MHS) is applied to determine 
marginal probability densities. Perturbations are applied in a principal-component parameter space, 
which is a rotated representation of the physical parameter space in which the axes align with the 
dominant correlation directions. This rotation provides a more efficient exploration of the parameter 
space, and is particularly effective when strong correlations between parameters are present. 
 
3) Identifying a forward model:  the input to the Bayesian inversion is the seabed power reflection 
coefficient R or the bottom loss ( RBL log10−= ), which can be computed from the ratio of upward to 
downward energy fluxes obtained by beamforming ambient noise measured at a vertical linear array 
(VLA).2,6 The forward model consists of computing a representation of the ambient noise data 
covariance matrix, from which replicas of the BL can be calculated for different combinations of the 
geoacoustic parameters. This replica BL is adjusted to include the smearing effect introduced by the 
VLA's finite aperture. Software routines for the forward model have been validated by comparison 
with OASN, the ambient noise module from the wavenumber-integration model OASES7 (OASN itself 
is too computationally expensive to use in the inversion algorithm).  
 
4) Determining the impact of array design (e.g., aperture, sensor density) and experimental conditions 
(e.g., wind speed) in geoacoustic inversion by analysis of synthetic data obtained from the forward 
model.5 
 
5) Applying the inversion framework to experimental data from previous publications.6,8,9  
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WORK COMPLETED 
 
1) The ray-tracing representation of the ambient noise field developed by Harrison2 has been 

adopted as the forward model to compute the angle- and frequency-dependent seabed BL. This 
approach considers wind-driven surface dipoles as the driving mechanism for the ambient noise.  
The strength of this field relative to other unwanted noise mechanisms defines a signal-to-noise 
ratio (SNR),5 which is included in this work as an unknown frequency-dependent parameter. 

2) Trans-dimensional (trans-D) Bayesian inversion with parallel tempering10 was used for 
geoacoustic parameter estimation from BL data derived from simulated ambient-noise.11  

3) The trans-D inversion was applied to data from the MAPEX 2000 experiment11 and the results 
were compared to previous work that utilized the Bayesian information criterion (BIC) for fixed-
dimensional inversion. Preliminary inversions using data from a drifting array from the Boundary 
2003 experiment8 were also carried out. 

4) A sequential trans-D Monte Carlo algorithm12 was applied to simulated data corresponding to a 
drifting vertical array. This approach provides estimates of geoacoustic parameters, true-depth 
layering structure of the seabed, and parameter uncertainties. The inversion was applied to 
incoherent estimates of seabed power reflection coefficient data,13 computed as the array drifts 
along a range-dependent track.  

5) Using simulated data, the impact of array aperture in geoacoustic resolution was studied. To 
resolve complicated seabed structure, large apertures are required. Since minimizing array 
aperture offers advantages in array design and deployment, signal processing techniques to extend 
short apertures (i.e., synthetic array apertures) were evaluated. 

 
RESULTS 
 
Trans-D approach to model selection: Initial results in this effort5 illustrated the application of 
Bayesian inversion to BL data using the BIC for model selection. The impact of wind strength in the 
estimation of seabed geoacoustic parameters was quantified, and results from geoacoustic inversion 
were compared to direct (core) measurements. As a more general approach, the trans-D Bayesian 
inversion algorithm11-13 was used to provide automated model selection over an unknown number of 
seabed layers and to quantify the uncertainty due to model selection. With the trans-D method, models 
from a set of K candidates are included in the estimation of the PPD, defined as 
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where ( )kk IL ,| md  is the likelihood function, while ( )kIP is the prior distribution for parametrization kI , 
assumed here as a discrete uniform distribution. ( )kk IP |m  is the prior distribution for the geoacoustic 
parameters km for a layered seabed with k interfaces. The vector km  is defined as 
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where ,,, iiic αρ and iz  are the sound speed, density, attenuation and interface depth of the ith layer, 
respectively. The SNRs5 account for the unknown strength of the wind-driven ambient-noise data (i.e. 
the useful signal) versus other unwanted sources of noise at F frequencies.  The PPD is sampled by a 
reversible-jump Markov chain Monte Carlo (rjMCMC) algorithm,4,14 which uses an extended 
Metropolis-Hasting (MH) criterion that allows trans-D jumps between parameterizations Ik, sampling 
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probabilistically over models with different parametrizations (number of layers) and quantifying the 
uncertainty due to the lack of knowledge of the model parameterization.  
 
Inversion results using a simulated environment consisting of depth-dependent variations in sound 
speed, density, and attenuation11 were in good agreement with the true sediment profiles, as well as 
with similar inversions carried out with active source simulated data. The trans-D inversion was also 
applied to data obtained from a moored VLA during the MAPEX 2000 experiment,11 providing 
improved estimates of parameter uncertainties compared to previous work under this effort5 using the 
BIC approach to model selection.  
 
Inversion of drifting-array simulated data: For a drifting array, the PPD evolves with time as the 
array moves over sediments in which the number of layers, the depth of interfaces, or the geoacoustic 
parameters change as a function of range. Sequential datasets can then be obtained by discretizing 
continuous-time recordings of ambient noise. For this application, a particle filter12 is used to update 
the estimated geoacoustic parameters from one array position to the next as new data become 
available. To generate simulated sequential data, the environment shown in Fig.1-(a) (similar panels for 
density and sediment attenuation were included in the simulation) was input to OASES7 for 
computation of the range-dependent ambient-noise field at a 32-element VLA with 0.18 m inter-
element spacing.13 This simulated environment (used in previous work in the context of active-source 
surveys12) includes realistic features such as range-dependent smooth transitions in geoacoustic 
parameters, thin sediment layers, and abrupt variations introduced by a geologic fault and an erosional 
channel. Conventional beamforming was used to obtain the power reflection coefficient at 8 
frequencies from 1000 Hz to 3000 Hz and grazing angles from 20o - 90o. These data were provided to 
the sequential Bayesian trans-D Monte Carlo algorithm for estimation of the PPD.13 Figure 1-(a) 
(bottom) shows the estimated mean model of the sediment sound speed, corresponding to simulated 
data from a 224-element array (40 m aperture).  

 
Figure 1 Geoacoustic inversion of ambient-noise sequential data: (a) True seabed sound speed 

profile input to OASES to generate simulated data vs mean model obtained via inversion.  (b) Power 
reflection coefficient estimated by beamforming using the true parameters (top) from (a) and the 

most probable model obtained via inversion (bottom), at range 150 m. 
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The estimated geoacoustic parameters (sound speed, number/depth of sediment interfaces) closely 
resemble the true sediment profile even at ranges containing thin sediment layers which are 
challenging for an inversion algorithm. Similar agreement was obtained for the density and the 
attenuation.  
 
As an example of the resolution limitation of the data, Fig. 1-(a) exhibits a mismatch in the inversion 
results at ranges 148-154 m corresponding to the erosional channel. To explain this mismatch,      
Fig.1-(b) shows the power reflection coefficient estimated by beamforming using the true geoacoustic 
parameters (top) and the most likely model obtained via inversion (bottom). The structure of the 
interference pattern in both cases is very similar for the angular range used for inversion (20o - 90o), 
causing the inversion algorithm to have slow convergence to the true solution while searching over the 
parameter space. Given more iterations, the estimated profile should eventually converge to the 
theoretical environment. Figure 1 shows the best results in a series of simulations in which the length 
of the array was varied from 40 m to 6 m to observe the impact of array aperture into the estimated 
sediment profiles. As the aperture decreased, features in the power reflection coefficient are lost due to 
beamforming smearing, resulting in low geoacoustic resolution. For field experiments, increasing 
geoacoustic resolution by augmenting the array aperture would make array deployment more difficult 
and decrease array stability while drifting. Therefore, other options such as synthetically extending the 
array were analyzed. 
 
Extension of the array aperture by signal processing: Given an N-element array with inter-element 
spacing z∆ , the seabed power reflection coefficient at grazing angle θ  can be approximated 
as )(/)()( θθθ BBR −= , where )(θB is the output of the conventional beamformer: 
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In (3), )(θw  is the array steering vector, while baC  is the spatial coherence between two sensors 
separated a distance ( ) zba ∆− , with Nab1 ≤≤≤ . Under mild requirements15, the matrix C  for 
ambient noise at a vertical array can be modelled as Toeplitz and only the first row must be known to 
uniquely determine the matrix. Increasing the array aperture by signal processing techniques (as 
opposed to by physically adding sensors to the array) requires extension of the coherence function, 
which can be achieved by zero padding15 or by extrapolation. For example, to obtain a synthetic 6-
element array from a 3-element array it is required to approximate the true spatial coherence as: 
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The zero-padding method has been shown to enhance features of the estimated power reflection 
coefficient.15 However, the power reflection coefficient obtained by a zero-padded covariance matrix 
differs from the corresponding quantity that would be obtained by using an actual array of similar 
aperture. In inversion, this represents a potential problem, since the forward model used while 
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navigating the parameter space must accurately represent the data to obtain unbiased estimation of the 
geoacoustic parameters of interest. To avoid this issue, for inversion problems extrapolation of the 
coherence function should be considered. 
 
The spatial coherence due to surface-generated ambient noise can be written as15 

( )[ ] ( )[ ] ,12)(
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whereλ  is the wavelength, )(kR is the seabed power reflection coefficient, and λθπ /sin2=k  is the 
vertical spatial wavenumber. It has also been shown15 that the Fourier transform of the spatial 
coherence is 
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Therefore, ( )zC  is band-limited and methods such as the iterative Papoulis-Gerchberg algorithm16 or its 
non-iterative versions17 can be used for extrapolation. Figure 2(a) shows an example of the estimation 
of the bottom loss for a two-layer environment consisting of a 0.75 m sediment layer (sound 
speed=1550 m/s, density=1.5 g/cm3, attenuation=0.2 dB/λ)  on top of a halfspace (1600 m/s, 2.0 g/cm3, 
0.15 dB/λ).  

 
 

Figure 2 Comparison of array-extension techniques for a 1.5-m aperture array used to approximate 
a 6-m array in a 2-layer environment: (a) Bottom loss obtained from the analytical solution and 

from beamforming using true apertures of 1.5 m and 6 m, as well as 6 m synthetic apertures using 
the zero-padding15and extrapolation16approaches. (b) Spatial coherence (4) for a true 6-m aperture, 

a zero-padded 6-m aperture, and an extrapolated 6-m aperture. 
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Figure 2-(a) shows an example in which the actual array is only 1.5 m aperture. The true bottom loss is 
shown as a reference, with sharp peaks at 18o, 30o, and 49o.  In this case, the zero-padding technique 
fails to reveal the BL peaks at 30o and 49o when used to synthesize a 6-m aperture, while the 
extrapolation technique shows those peaks. For inversion purposes, the most important characteristic 
of the extrapolation technique is that the results from the extrapolated 6-m aperture are in reasonable 
agreement with the results from a true 6-m aperture. Figure 2(b) compares the true coherence function 
over 6 m, to the extrapolated coherence function and the zero-padded coherence. The extrapolated 
coherence resembles the true coherence, following the same oscillatory pattern. The difference 
between the extrapolated and the true coherence is due to the slow convergence of the Papoulis- 
Gerchberg algorithm,16 which in Figure 2(b) was truncated at 1000 iterations (~2 minutes 
computational time). 
 
Figure 3-(a) shows a similar example with a true 6-m aperture array (dashed curve), in which the BL 
peaks at 30o and 49o can be observed.  The zero-padding technique was used to double the length of 
the array, and the result shows sharper peaks approaching the true bottom loss. However, the BL is 
underestimated at grazing angles around 90o, and in general the results from this extrapolation do not 
agree with the results from a true 12-m aperture. The extrapolation technique using the Papoulis-
Gerchberg algorithm is also demonstrated, showing also an improvement in the height of the BL while 
being in good agreement with the true 12-m aperture over most grazing angles.  
 

 
 

Figure 3 Comparison of array-extension techniques, similar to Fig.2, with a 6-m aperture array 
used to approximate a 12-m aperture array. As in Fig.2, the results from the extrapolated 12-m 

aperture are in good agreement with the results that would be obtained with a true 12-m aperture. 
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IMPACT/APPLICATIONS 
 
In shallow water regions the performance of Navy sonar systems is strongly influenced by acoustic 
interaction with the seabed and, therefore, knowledge of geoacoustic parameters and their 
corresponding uncertainties are required to predict and optimize sonar performance. Bayesian 
inversion methods offer an elegant and powerful framework not only for parameter extraction but also 
for uncertainty estimation, thereby quantifying the geoacoustic information content of the data. The 
proposed inversion methodology has been highly effective when applied to active surveys, and current 
results5,11,13 using experimental and simulated ambient noise data show great potential to overcome 
limitations of current methods of geoacoustic inversion. The smearing introduced by beamforming is 
one of the main factors limiting the resolution of ambient noise remote sensing methods. Since 
increasing the array length is an impractical solution to these problems, zero-padding and extrapolation 
techniques may be helpful.  
 
RELATED PROJECTS 
 
1) Automated geoacoustic inversion and uncertainty: Meso-scale seabed variability in shallow water 

environments (Award Number: N00014-09-1-0394). This project develops a Bayesian 
methodology for advanced and automated geoacoustic inversion. A range of active source data 
are inverted to quantify geoacoustic uncertainty. This project applies and further develops these 
methods for ambient-noise data. 

2) Ocean Ambient Noise Studies for Shallow and Deep Water Environments, 2012-2014 (Award 
Number: N00014-12-1-0017).  
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