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LONG-TERM GOALS 
 
To develop net-centric, autonomous underwater vehicle sensing concepts for  littoral MCM and ASW, 
exploiting collaborative and environmentally adaptive, bi- and multi-static, passive and active sonar 
configurations for concurrent detection, classification and localization of  subsea and bottom objects.. 
 
OBJECTIVES  
 
The MIT Laboratory for Autonomous Marine Sensing Systems (LAMSS) has continued  its 
interdisciplinary research under the GOATS project, initiated in 1998 in collaboration between MIT 
and NURC, and as such a seamless continuation of the research effort under the previous grant 
N00014-08-1-0013. The principal objective is to develop, implement and demonstrate real-time, 
onboard integrated acoustic sensing, signal processing and platform control algorithms for adaptive, 
collaborative, multiplatform REA, MCM, and ASW in unknown and unmapped littoral environments 
with uncertain navigation and communication infrastructure. 
 
A related objective is the development of a nested, distributed command and control architecture that 
enables individual network nodes of clusters of nodes to complete the mission objectives, including 
target detection, classification, localization and tracking (DCLT), fully autonomously with no or 
limited communication with the network operators. The need for such a nested, autonomous 
communication, command and control architecture has become clear from the series of experiments 
carried out in the past under GOATS and several experiments carried out under the UPS PLUSNet 
program. 
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APPROACH  
 
The GOATS (Generic Ocean Array Technology Sonar) research program is a highly interdisciplinary 
effort, involving experiments, theory and model development in advanced oceanography, acoustics, 
signal processing, and robotics. The center-piece of the research effort has been a series of Joint 
Research Projects (JRP) with the NATO Undersea Research Centre (NURC). The joint effort was 
initiated with the GOATS' 98 pilot experiment followed by a series of annual field experiments, most 
recently the GLINT’08, ’09, and ’10 experiments focusing on adaptive autonomy for multid\static 
active surveillance networks. In addition to the field experiments involving significant resources 
provided by NURC, GOATS uses modeling and simulation to explore the potential of autonomous 
underwater vehicle networks as platforms for new adaptive sonar concepts for undersea networks. 
 
The fundamental approach of GOATS is the development of the concept of a network of AUVs as an 
array of Virtual Sensors, based on fully integrated sensing, modeling and control, reducing the inter-
platform communication requirements to be consistent with the reality of shallow water acoustic 
communication in regard to low bit-rate, latency and intermittency 
 
In regards to applications to MCM, GOATS explores the use of bi-static and multi-static Synthetic 
Aperture created by the network, in combination with low frequency (1-10 kHz) wide-beam 
insonification to provide coverage, bottom penetration and location resolution for concurrent detection, 
localization and classification of proud and buried targets in SW and VSW.  The signal processing 
effort is therefore centered around generalizing SAS processing to bi-static and multi-static 
configurations, including bi-static generalizations of auto-focusing and track-before-detect (TBD) 
algorithms. Another issue concerns the stability and coherence of surface and seabed multiples and 
their potential use in advanced low-frequency SAS concepts. 
 
More recently, the GOATS effort has transitioned towards the development of similar, autonomous 
network concepts for passive littoral surveillance, e.g. the Undersea Persistent Surveillance (UPS) 
program, initiated in 2005 and completed in 2008. PI Schmidt was lead PI and Chief Scientist for the 
UPS PLUSNet Program, which developed a network concept of operations based on clusters of AUV 
and gliders, connected via acoustic communication, and intermittent RF communication with the 
operators through periodically surfacing gliders. A prototype network concept with a hybrid, 
cooperating suite of underwater and surface assets was successfully demonstrated in PN07 in Dabob 
Bay, WA. As in the past GOATS effort, the MIT marine autonomy effort is utilizing the open-source 
MOOS control mission control software originally developed and funded under GOATS, in 
combination with the IvP multi-objective optimization helm, developed at NUWC and MIT. To take 
advantage of the robustness of the native control software, while at the same time retaining the 
flexibility in regard to sensor-driven adaptation and collaboration, MIT LAMSS has developed a new 
nested control architecture, where the lower level control of the nodes, as well as the overall field 
control can be performed using arbitrary third-party software, while the medium level, adaptive and 
collaborative control of the nodes and the clusters is performed within the MOOS-IvP software 
framework.   
 
Such a nested command and control infrastructure with heterogeneous assets invariably need 
translation to and from a common communications protocol.  Starting with the MB'06 experiment, 
MIT and Bluefin AUVs were controlled using a new, so-called “back-seat driver” paradigm wherein 
low-level commands to the Bluefin control software were translated and conveyed by a specially 
designed MOOS module.  
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The mid-level, adaptive and collaborative control of the network nodes is carried out using MOOS in 
combination with the new multi-objective, behavior-based IvP control framework developed within 
MOOS by Michael Benjamin at NUWC/MIT. The core of this architecture  consists of a behavior-
based control system which uses multiple objective functions to determine the appropriate course, 
speed, and depth of the platform at every control cycle (typically 10-20 Hz). The desired course of 
action is determined by computing a multi-function optimization over the objective functions using the 
Interval Programming Model developed by Benjamin which provides a very fast optimization suitable 
for small vehicles. 
 
The development of GOATS concepts is based heavily on simulation, incorporating and integrating 
high-fidelity acoustic modeling, platform dynamics and network communication and control. In regard 
to the environmental acoustic modeling, MIT continues to develop the OASES-3d modeling 
framework for target scattering and reverberation in shallow ocean waveguides. As was previously the 
case for the MCM effort, the approach has been to develop a complete system simulation capability, 
where complex adaptive and collaborative sensing missions can be simulated using state-of-the-art, 
high-fidelity acoustic models for generating synthetic sensor signals in real time. This is being 
achieved by linking the real-time MOOS simulator with a generic, high-fidelity acoustic simulation 
framework GRAM, which in ‘real-time’ generates element-level timeseries using Green’s functions 
using  legacy environmental acoustic models such as OASES, KRAKEN and BELLHOP.  
 
WORK COMPLETED 
 
Classification of Underwater Targets by AUV Sampled Bistatic Acoustic Scattered Fields 
The goal of this research is to investigate the combination of signal processing, machine learning and 
AUV behaviors for the onboard classification of underwater targets.  The final goal of this project is to 
have a vehicle loaded with appropriate models able to do onboard classification fully autonomously 
using only scattered field data collected as passes through the bistatic scattered field of different target 
types.  The simulation work done so far has been mostly on the classification of spherical verses 
cylindrical targets in the presence of rough bottom scattering. 
 
The process to achieve target classification consists of two key parts: model training/analysis and 
target classification.  The model training/analysis aspects can be carried out offline, while target 
classification must be carried out in real time on the vehicle.  In the last year, appropriate processing 
chains have been written for both steps in target classification, and have been demonstrated with the 
LAMSS MOOS-IvP simulation environment.  The development of these processes is in preparation for 
the GOATS'14 experiment, planned for January 2014. 
 
The training and analysis steps for the formulation of machine learning models have been finalized 
using the groundwork laid in previous years.  The training process takes in a full field scattered field 
and generates training and testing example sets using that data.  A Support Vector Machine (SVM) is 
then used to train a model for classifying new target data.  Analysis of independent test sets are used to 
derive a confidence model and critical regions for the AUV to sample.  The full field scattered field 
may be simulated using the SCATT-OASES acoustic package or may be derived from a real field 
collected by an AUV. In the latter case, the data is input either as a log file containing vehicle position 
and target amplitude output by onboard signal processing, or as a directory where acoustic binary files 
may be found. 
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Figure 1.  Flow chart of the Training/Analysis Program. 
 
 
In addition to the training process, a classification processing chain has been written this year to 
calculate target classification and confidence while guiding the vehicle to regions of the scattered field 
that give a high probability of correct classification.  A vehicle loaded with the results from the 
training/analysis process is then able to classify underwater targets using a combination of vehicle 
behaviors, signal processing and machine learning classification.  Once a target track is sufficiently 
confident, the target classification behavior and processing chain are initialized.  The target 
classification behavior provides the vehicle with a path to follow that improves the likelihood of 
confidence target classification.  While it follows this path, the classification processing chain 
calculates target amplitude and periodically classifies the list of received target amplitudes, calculating 
confidence.  This process continues until a confidence threshold is reached or the vehicle path is 
completed.   Testing has been carried out using the LAMSS MOOS-IvP simulation environment, using 
scattering amplitudes derived from acoustic simulations.  
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Figure 2. Classification Processing Chain. 

 
 
Vehicle behaviors have been developed for use in collecting full data sets from real scattered acoustic 
fields and for guiding the vehicle through the parts of the scattered field of greatest interest for 
classification.  The full data sets collected using the full field sample behavior are then used in the 
model training/analysis steps.  In this behavior, the vehicle remains broadside to the target except in a 
region in the forward scatter direction where the arrival times are too close together for meaningful 
data to be extracted.  In the transition region, the vehicle moves between radii. 
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Figure 3. The full field sample behavior. 
 
In the classification mode behavior, the vehicle hits a set of empirically derived critical waypoints 
while staying as broadside to the target as possible.  An A* search using a weighted cost function of 
“broadsideness” and path length is used to calculate the optimal path through the field subject to 
vehicle turn radius and pitch angle constraints.  Additional nodes are generated if necessary to improve 
broadside behavior.  
 

 
 

Figure 4. Vehicle in LAMSS MOOS-IvP simulator running a critical waypoint sampling behavior, 
compared with desired path. 

 
Additional preparation for the GOATS'14 experiment has involved readying the payload and array.  Of 
upmost concern for a bistatic acoustic experiment is time synchronization: because source and reciever 
are not co-located, and the AUV is submerged, exact time sychronization to less than 10us is essential.  
This is achieved through the use of a Symmetricom SA.45s Chip Scale Atomic Clock (CSAC).  The 
CSAC provides an onboard time source with better than nanosecond accuracy, and is synchronized to a 
GPS clock on the surface.  With the source pulse-per-second (PPS) synchronized to the GPS signal and 
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the computer clock and A to D converters PPS synchronized to the CSAC, this setup ensures that the 
start of the second is a known quantity.  This care in time synchronized should produce a superior 
acoustic bistatic data set.  The inexpensive CSAC technology also makes a bistatic acoustic approach 
more feasible. 
 
Autonomous Adaptive Oceanographic Feature Detection and Tracking with AUVs 
In testing AUV autonomy algorithms and behaviors, it is essential to have a robust AUV simulation 
environment to mimic real-world conditions.  To this end, MSEAS 4D dynamic ocean models have 
been integrated into the LAMSS AUV autonomy simulation environment for research and behavior 
development purposes.  This was accomplished using a new Octave-MOOS interface, pOctaverMIT, 
based on the original pOctaver code from a group at CMRE in La Spezia, Italy.  With the integrated 
MSEAS models, we were able to demonstrate end-to-end simulations of AUVs & gliders operating in 
realistic dynamic ocean environments, collecting environmental data (i.e., temperature, salinity, flow 
velocities) from simulated sensors, much as real vehicles would in an actual ocean environment.  The 
primary use thus far for the MSEAS models as a simulation environment have been for testing oceanic 
front boundary tracking behaviors that have been developed over the past year for use on board AUVs.  
 
Off the east coast of the United States flows the Gulf Stream, which is a large stream of warm water 
flowing south to north just off the continental shelf.  The interface of the Gulf Stream with the 
continental shelf water in the Mid-Atlantic Bight region creates a strong oceanic front along the shelf 
break, which is of much interest to scientists.  To study dynamic ocean features on spatial scales as 
large as this front, it may be more efficient to use AUVs equipped with an autonomous and 
environmentally-adaptive front tracking behavior, rather than by pre-planning a non-adaptive AUV 
front tracking mission that would require monitoring and updating remotely by a human operator.  To 
test this theory, an autonomous and adaptive front tracking behavior, BHV_FrontTrack, has been 
developed for individual AUVs (though it can easily be deployed on many AUVs at once) and is 
currently being tested and polished using MSEAS models in AUV simulations. 
 
2D (horizontal space) front tracking algorithms have been verified in a static ocean model, and are 
currently being tested & evaluated in simulation using an MSEAS dynamic ocean model of the Mid-
Atlantic Bight as the simulation environment.  The concept of 2D front tracking is shown in Fig. 5.  
The challenge to front tracking with AUVs lies in the disparity between the characteristic 
spatiotemporal scales of the dynamic ocean environment and the spatiotemporal coverage and 
resolution achievable by a single (or multiple) AUV(s) in that environment.  This is where 
collaborative multi-AUV missions become important.     
 
3D front tracking concepts are currently being developed for implementation as MOOS-IvP behavior 
algorithms.  These include a horizontal helix behavior (see Fig. 6) that can be performed by one or 
more AUVs, where the central axis of the helix lies along the approximate front boundary at a given 
depth.  Both the helix and a simpler zig-zag front tracking behaviors can be extended to cover an even 
greater depth range by distributing multiple AUVs across a range of depths and at roughly the same 
position in the horizontal to perform front tracking in a coordinated manner while improving the 
synopticity of the data set collected, as illustrated in Fig. 6.  These collaborative AUV behaviors are 
currently being developed and tested such that multiple AUVs can autonomously coordinate their front 
tracking behaviors and distribute themselves along a front boundary (in the horizontal and vertical 
planes) to improve spatiotemporal coverage and resolution in the collected data set. 
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Figure 5. Concept for multi-AUV coordination and tracking of a front boundary on the ‘global’ 
scale, and ‘local’ scale tracking of the front boundary using a zig-zag pattern across the boundary 
in the horizontal plane. The circles are range rings around each AUV, specifying the range within 
which all samples collected by the AUV may be considered current measurements of the front (all 

samples within the characteristic time and spatial scales of the dynamic front). 
 

 
Figure 6. Concept for multi-AUV coordination and tracking of a 3D front boundary using a 

horizontal helix behavior.  Each helix represents the path that a single AUV would take, where the 
central axis lies along the locally estimated front boundary.  The AUVs are separated in depth and 
somewhat coordinated in horizontal motion to provide a 3D data set with even more depth coverage 

than a single AUV helix.  The 3D position of the front is delineated by the black vertical curve. 
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Matched-Beam Differencing: Depth-tracking of a near surface target from the deep ocean 
In the past year, a depth-tracking algorithm has been developed to determine the depth, in real time, of 
a near surface source from a vertical line array in the deep ocean. The algorithm, known as Matched-
Beam Differencing (MBD), takes advantage of the Lloyd mirror interference patterns that the near 
surface targets create.  
 
As the target moves in range,  the major features of interest (nulls from Lloyd mirror pattern) from the 
beamformer output are extracted as in Figure 7.  This new signal is cross-correlated with an entire 
dictionary of known signals for varying source depths in order to determine the actual target depth.  
The number of nulls is highly dependent of frequency and source depth.  This method can be used with 
single frequency or broadband sources. In the broadband case, multiple frequencies can be used in 
order to get a better estimate of depth and range. 
 

 
 

Figure 7: Making the Matched-beam difference signal. From top down: a). Beampattern 
vs. Range of 100m depth 150Hz source, b). Find Maximas, c). Take differencae with no-null 

beampattern, d). Convolve with boxcar e). Normalize 
 

Autonomous Network Communication and Control 
Goby: Practical acoustic networking 
In 2013, we completed the first release of the second version of the Goby Underwater Autonomy 
Project (Goby2), which provides a field tested suite of tools for underwater and other “slow link” 
communications situations. The Goby2 generic modem driver was used to include direct support for 
Iridium satellites and the SonarDyne Avtrak acoustic modem. Additional work and at-sea testing was 
completed on the very low overhead vehicle position telemetry system presented in [4], which is 
discussed in the results section. 
 
iFrontSeat: A unified approach to deploying autonomy on a diverse collection of vehicles 
For the broad applicability of our autonomy systems, we create a separation between the "frontseat" 
computer (provided by the vehicle manufacturer and is typically proprietary) and the “backseat", which 
runs the high level autonomy (typically the IvP Helm), sensing, and communications (typically Goby) 
components. 
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Not surprisingly, a piece of software is required to interface between the "frontseat" and the 
"backseat". Historically, a new interface has been written for each vehicle, which led to poor 
scalability and low quality in certain interfaces. We developed the new application iFrontSeat 
(Schneider, iFrontSeat: a new approach for writing extensible MOOS-IvP "frontseat"-"backseat" 
payload interface drivers, 2013) which aims to address these problems by providing a single open 
source implementation of the connection to the "backseat" while providing a structured well-defined 
extensible interface for writing different "frontseat" drivers. Currently, a driver has been developed and 
tested for the Bluefin Robotics family of AUVs. 
 
RESULTS 
 
Classification of Underwater Targets by AUV Sampled Bistatic Acoustic Scattered Fields 
A number of simulation experiments have been carried out to demonstrate the feasibility of a machine 
learning approach to classifying spherical verses cylindrical underwater targets using only bistatic 
scattered field amplitudes.  A set of experiments were set up using the SCATT-OASES acoustic 
package, to show performance in different frequencies and target positions, as well as to demonstrate 
robustness to navigation error.  The environment is assumed to be an 8m deep harbor with a fluid sand 
bottom (modeled using an isotropic Goff-Jordan power spectrum), with a source located at 3m depth 
and 50m from the target, approximately the same as will be encountered in the GOATS'14 experiment.  
An SVM model is trained using a dataset containing about 2000 training examples, each consisting of 
amplitude samples of between 5 and 20 waypoints through the scattered field.  An independent 1000 
example training set is used to assess the models.  As a base case, a 'clean' model was trained, and 
tested using a test set without any shifts, environmental changes or errors.   

 
Figure 8. Comparison of scattered fields for spherical verses cylindrical targets in the presence of 

isotropic bottom roughness. 
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The result of this base case is perfect classification of all test examples, as shown in Fig. 9.  
 

 
 

Figure 9. Classification results for 'clean' model classifying 'clean' test set. 
 
Over a wider range of frequencies, the model does not do as well, as illustrated in Fig. 10:. Because the 
scattering pattern varies with frequency, the extreme values becomes less similar as the source 
becomes broader band.  This suggests that if a broadband source is used multiple classification models 
may need to be used. 
 

 
 

Figure 10. Model performance over a wider range of frequencies. 
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To show robustness to target and vehicle position estimation error, the values at each features in the 
test vector were mapped to some point at a distance Δx,Δy,Δz from the original point. The original 
feature number is retained, and the new value applied, as though the vehicle thought it was at x,y,z but 
was sampling at x+Δx,y+Δy,z+Δz.  The change in x,y, and z values were selected using a gaussian 
with a mean of zero and a standard deviation that varied.  With a standard deviation of up to 20m, the 
'clean' model was able to very successfully classify the shifted test set with sufficient confidence, with 
verification accuracy of about 90%. 
 
To show robustness to environmental change, a model was trained using a fluid sand bottom, then used 
to classify training sets with elastic sand and limestone bottoms.  The elastic sand test set had 
classification results as good as the fluid sand test set.  The extreme case of the limestone bottom 
resulted in far more misclassification, but still showed some success in classification of targets. 
In addition, this methodology was applied to regression for estimation of various environmental and 
target parameters.  The greatest success was seen in the estimation of bottom anisotropy direction 
using amplitudes from the resultant scattered fields, shown in Fig. 11.  The angle being estimated is the 
angle between the source and the bottom ridging, such that for the zero degree case the ridges are 
aligned with the source and in the ninety degree case the ridges are perpendicular to the source. 
Scattered fields were simulated using the SCATT Goff-Jordan anisotropic power spectrum bottom 
roughness model.   
 

 

Figure 11. Comparison of bottom ripples and scattering patterns for different anisotropy angles. 
 
An SVM regression model for ripple direction was trained using angle steps of 15 degrees.  Bottom 
ridging direction angles for an independent test set were then estimated using that model.  Several 
vehicle paths gave bottom direction estimation errors of less than 5 degrees at all angles of interest. 
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Figure 12. Anisotropy Angle Estimation verses True Anisotropy Angle for 5 best paths. 
 
Autonomous Adaptive Oceanographic Feature Detection and Tracking with AUVs 
Results from testing the newly developed autonomous and adaptive front tracking behavior, 
BHV_FrontTrack, using simulated AUVs in the MSEAS 4D dynamic ocean model of the Mid-Atlantic 
Bight region are described below.  These include results from initial testing in a simplified static 
'snapshot' of the MSEAS model, as well as results from ongoing test runs in the full 4D dynamic 
MSEAS model. 
 
A. Static front tracking results 
In simulation, a single AUV autonomously and adaptively tracked the shelf break front boundary 
(using the zig-zag front tracking behavior) in a static MSEAS Mid-Atlantic Bight model environment 
for more than 55 km over the duration of the simulation (26.4 hours).  This is shown in Fig. 13.  The 
distance along the front that the AUV could travel in this mode was only limited by the duration of the 
simulation runs.  Although there were a few areas in which the AUV temporarily lost the front edge 
(often where the font curved sharply), the AUV was usually able to re-find the front edge 
autonomously and get back on course tracking the front. 
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Figure 13. The Unicorn AUV (yellow track) tracking a static temperature front between 18°C (blue-
shaded region) and 19°C (green-shaded region) along the Mid-Atlantic Bight shelf break front in a 
modified MSEAS ocean model. Unicorn tracked the front southeast over 55 km (as the crow flies) 

over the duration of the simulation (26.4 hours). 
 
B. Dynamic front tracking results 
Tracking a dynamic front is a much more challenging problem in that, on coastal ocean scales, the 
edge of a front can shift position by kilometers over the course of a few hours, making it difficult for 
an AUV swimming at about 2 m/s to detect and track the front boundary as it moves without getting 
left behind.  In simulation, a single AUV autonomously and adaptively tracked the shelf break front 
boundary (using the zig-zag front tracking behavior) in a dynamic MSEAS Mid-Atlantic Bight model 
environment for more than 70 km over the duration of the simulation (39.9 hours).  In contrast, a 
second AUV operating in the same environment at the same time only covered about 10-25 km over 
the same amount of time.  This is shown in Fig. 14.  Again, the distance along the front that the AUVs 
could travel in this mode was only limited by the duration of the simulation runs.  Testing in the 
dynamic ocean environment is still ongoing to improve the robustness of the front tracking behavior. 
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Figure 14. The Unicorn AUV (yellow track) and Macrura AUV (magenta track) tracking a dynamic 
temperature front between 15°C (light blue-shaded region) and 22°C (orange-shaded region) along 
the Mid-Atlantic Bight shelf break front in a 4D MSEAS ocean model.  Unicorn tracked the front 
southeast over 70 km (as the crow flies) over the duration of the simulation (39.9 hours).  Macrura 
tracked the front northwest over only 10 km (as the crow flies) over the same simulation duration. 

 
Matched-Beam Differencing: Depth-tracking of a near surface source from a deep VLA 
 
In the following simulation, the dictionary with varying source depths was created using OASES while 
the “actual” target signal was created using BELLHOP (ray tracing).  In this simulated experiment the 
source has a bandwidth 100-200Hz with an initial range of 20 km and passing the array at 7 km CPA. 
The same trajectory was run for multiple depths ranging from about 5-200m. Three frequencies were 
used in order to determine the correct depth of the target.  The results of each frequency were then 
weighted inversely proportional to lambda-weighted sample mean. Figures 15 shows the estimates, 
compared to the ground truth. 



16 
 

 
Figure 15 - Depth Estimates vs. Time for different source depths 

 
Spatial Properties of the acoustic field in the near-surface deep ocean convergence zone 
 
Convergence zones are well established as the key feature of propagation in the deep ocean from a 
near-surface source, creating increased intensity at a range of ~60 km. They are caused by upward 
refracting, deep sea isothermal gradient.  Although much research has been done to determine the 
approximate location, skip distance and width of these convergence zones, not much as been done to 
determine how quickly the CZ onsets or other spatial properties. In the past year, it has been 
determined that a relationship exists between how quickly the CZ onsets, or the spatial “slope” 
representing the rate of the intensity in range, of the CZ vs source depth, sound speed profile and 
frequency, and a significant sensitivity is observed. As an example Fig. 17 shows the range derivative 
of the acoustic pressure at the onset of the CZ for a receiver at 60 m depth, for the profiles shown in 
Fig. 16. 
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Figure 16 – Munk sound speed profiles investigated 

 

 
 

Figure 17 – Spatial Slope of CZ for 100Hz source at 60m depth for the sound speed profiles  
shown in Fig. 7 
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Autonomous Network Communicatioon and Control 
Goby:  Highly compressed encoding of vehicle positions 
The technique for sending AUV “ownship” position estimates to a topside operator or collaborating 
vehicle was augmented in 2013 by the addition of a Kalman filter tracker (in addition to a last-heading 
tracker) (Schneider & Schmidt, A State Observation Technique for Highly Compressed Source Coding 
of Autonomous Underwater Vehicle Position, in press). It was demonstrated on two experimental data 
sets (GLINT10 and AGAVE07) and implemented in the field during the MBAT12 experiment (see 
Figure 18), leading to mean compression ratios as high as 93% (relative to a standard 32-bit integer 
representation) for the Cartesian position of the AUV. The position of the vehicle is needed to give 
operators assurance that the vehicle is performing properly and to correlate data measured with the 
physical location it was taken. However, historically, the position data took nearly all the acoustic 
throughput available, leaving little room for sending other data. This technique greatly reduces the 
overhead used by position telemetry, leaving room for more useful data such as contact and track 
reports. 
 

 
 

Figure 18: Reported depth of the AUV Unicorn during the MBAT12 Experiment using the standard 
technique (red) and the new state observer compression (blue). The new technique provides a low 
overhead method of "backfilling" vehicle positions for the operator to see an accurate trajectory. 

 
RELATED PROJECTS  
 
This effort has constituted part of the US component of the GOATS`2000 Joint Research Project (JRP) 
with the NATO Undersea Research Centre, and is currently collaborating with NURC under the 
Autonomous Sensing Networks Joint Research Projects (JRP).  
 
The GOATS program developed out of the ONR Autonomous Ocean Sampling Network (AOSN) 
initiative completed in FY00, and is directly related to the Shallow Water Autonomous Mine Sensing 
Initiative (SWAMSI), initiated in FY04, and ending in FY12. 
 
The Nested Autonomy architecture and acoustic modeling capabilities developed under GOATS has 
been applied in several other related programs MIT was partnering in, including the now completed 
AREA (Adaptive Rapid Environmental Assessment) component of the now completed  ONR 
“Capturing Uncertainty” DRI,  aimed at mitigating the effect of sonar performance uncertainty 
associated with environmental uncertainty by adaptively deploying environmental assessment 
resources.  
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The continued development and maintenance of the MOOS-IvP autonomy software being funded by 
ONR Code 31 (D. Wagner and B. Kamger-Parsi, Program Managers), and is also supported by funding 
from non-Government Institutions such as the Battelle memorial Institute.  
 
The OASES modeling framework, which is being maintained, upgraded, and distributed to the 
community under this award, has been used intensively in all the related programs MIT is participating 
in. 
 
TRANSITIONS 
 
The environmentally and tactically adaptive autonomy software infrastructure using MOOS-IvP, 
developed under GOATS continues to be transitioned to other DoD programs. Thus, the depth-
adaptive MFA sonar and platform control in the SHARK surveillance concept developed by DARPA 
under the Deep Sea Operations Program (PM Andy Coon) has been developed by MIT and is currently 
being integrated into the two 6000 m rated active sonar AUVs. The MOOS-IvP Platform Autonomy 
uses an embedded version of the GRAM environmental acoustic modeling infrastructure to 
dynamically relocate the platform for optimal sonar operation. The first deep sea demonstration is 
scheduled for Nov. 1013. This program also makes extensive use of the GOATS autonomous network 
sensing simulator, integrating MOOS-IvP with high-fidelity acoustic modeling, providing real-time 
simulation and processing chain stimulation. 
 
Another 2013 transition is the adoption of the MOOS-IvP autonomy software infrastructure for the 
NRL reliant vehicle used in Brian Houston’s LFBB program, as well as for other acoustic sensing 
platforms operated  in the new NRL Autonomy facility. As part of this transition, PI Schmidt together 
with Dr. Mike Benjamin gave a 3-day short couse on MOOS-IvP autonomy to NRL scientists and 
engineers. 
 
Also, NATO CMRE continues to be a very active user of the MOOS-IvP adaptive autonomy 
infrastructure and the associated environmental acoustic modeling infrastructure. All or most of their 
AUVs and ASCs are being operated using MOOS-ivP, and CMRE have developed a wide suite of 
dedicated autonomy processes and behaviors which have been successfully used in several field 
experiments in their Multistatic Active Acoustics program, and whenever possible they have fed their 
software mules back to the MOOS-IvP community for general use.. 
 
The Goby2 acoustic networking suite developed under GOATS and SWAMSI was initially officially 
released in Februrary, 2013. Goby2 has transitioned substantially inside and outside of the marine 
community. A few examples include: 

• Bluefin Robotics has chosen the Goby2 marshalling language, DCCL, as its standard for 
underwater telemetry. DCCL will be spun-off as a standalone project in the next version to fast-
track development and adoption as a standard with the marine community. 

• The MIT DARPA Robotics Challenge Team (http://drc.mit.edu/) has adopted Goby2 for all the 
slow-link communications between the operator and disaster-relief humanoid robot. The MIT 
team placed 3rd overall in the June 2013 virtual challenge, and 2nd in network usage (i.e. 2nd 
fewest bytes used from the operator to the robot). 

• The DARPA Deep Sea Operations (DSOP) team lead by Applied Physical Sciences is using 
Goby2 for all slow-link networking, including acoustic telemetry from autonomous underwater 
vehicles and Iridium satellite communications between remote surface nodes. 

http://drc.mit.edu/
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