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LONG-TERM GOALS 
The objective of this research is to study the ocean ambient noise field by means of new 
physics-based processing techniques, to determine ways to exploit noise for 
environmental characterization and to improve sonar-system performance.  

OBJECTIVES 
Effective performance prediction of active and passive sonar systems relies on accurate 
modeling of sound propagation in the environment of the target and receiver. In shallow 
littoral water, propagation is affected by interaction with the acoustic waveguide 
boundaries, i.e. the sea surface and the seabed. The seabed reflection loss in particular is 
a primary contribution to the transmission loss, and is included in shallow-water 
propagation models as a power reflection loss coefficient, a function of frequency and 
grazing angle.  

A simple passive technique for estimating the bottom loss by beamforming the ambient-
noise field using a vertical line array has been developed by Harrison and Simons 
[Harrison, 2002]. The advantages of passive bottom-survey techniques include simpler 
measurement requirements, decreased risk of counter-detection, and minimal 
environmental impact. However, beamforming has some inherent limitations, which 
affect in particular the angular resolution: All other array parameters being equal, the 
angular resolution improves when the array length increases. With increasing interest for 
short arrays, which can be more easily deployed (even on autonomous underwater 
vehicles) and potentially eliminate array-mismatch errors due to geometric deformation 
of the array, poor angular resolution becomes a matter of concern. In recent work, we 
have proposed a physics-based processing technique for improving the angular resolution 
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of short arrays and investigated its application to measured data as well as its limitations 
[Publications #1 and #2]. 

APPROACH 
The research has included the development of a new derivation in frequency-
wavenumber domain of the power reflection coefficient from the array spatial coherence 
function (providing further theoretical support for Harrison and Simons’ technique, 
whose original justification was based on an energy-flux argument), and the development 
of the synthetic-array processor, a processing technique that exploits the physical 
properties of the noise field to improve the angular resolution of the array. The new 
derivation reveals the dependence on array location and provides factors for providing 
corrections for refraction and volume absorption. 

BOTTOM-LOSS ESTIMATION THROUGH BEAMFORMING OF AMBIENT NOISE 

For a wave front of frequency ω  incident upon the bottom at grazing angle 0>bθ  (see 
Figure 1 for the definition of all geometric quantities), the bottom loss is defined as: 

(1)  

where ( )ωθ ,bR  is the plane-wave power reflection coefficient of the bottom. Harrison 
and Simons show that the bottom loss can be computed from an estimate ( )ωθ ,ˆ

bR  of the 
power reflection coefficient obtained from array data as the ratio of the downward and 
upward beam powers: 

(2)  

BEAMFORMING BASIC EQUATIONS 

Beamforming is a well-known spatial-filtering technique whose theory is treated in 
textbooks (e.g., [Johnson, 1993]); here we only report some equations that support 
previous and subsequent material. The average beam power ( )ωφ,B  is defined as (for the 
sake of simplicity, in the following the dependence on frequency and grazing angle will 
often be dropped in the right-hand side of equations): 

(3)  

In	
  Eq.(3)	
  H 	
  denotes	
  the	
  conjugate	
  transpose	
  operation,	
   E 	
  denotes	
  expectation	
  and 
( ) [ ]TM,...,w,ww, 110 −=ωφw  is the weight vector for the steering angle φ  (T denotes the 

transpose operation). The angle 0=φ  corresponds to the array being steered towards 
broadside (i.e., horizontally for a vertical array), 0>φ  towards the surface, and 0<φ  
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towards the bottom. The vector ( ) ( ) ( ) ( )[ ]TM,...,p,pp ωωωω 21=p , where 
( ) ( ){ }tpp mm F=ω , represents the data from the M  hydrophones in the array ( {}⋅F  

denotes the Fourier transform). 

	
  

Figure 1: Definition of coordinate system and geometric quantities. For constant 
sound speed, the rays are straight lines (hatched), and rbs θθθ =ʹ′=ʹ′ . The solid lines 
represent ray paths in the presence of a sound-speed profile. The same angle at the 

receiver rθ  is considered in both cases. 

In real-world applications the spatial coherence matrix (or cross spectral density matrix, 
hereafter also referred to as “CSD matrix”) [ ]HE ppC =ω  is estimated by averaging the 
outer product over K  snapshots: 

(4)  

and the average output power is then estimated as: 

(5)  

Equation (2) shows that, in bottom-loss estimation, the ratio of the beamformer output 
power is used to estimate the power ratio of (plane) wave fronts incident upon the array 
from angles symmetric with respect to the horizontal. 
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BEAMFORMER ANGULAR RESOLUTION 

Adopting the definition of resolution based on the Rayleigh criterion, and expressing the 
wave-propagation direction in terms of the vertical wavenumber, the angular resolution 
for a linear array is [Johnson, 1993]: 

(6)  

where kΔ  is the distance between the two closest values of k  that can be resolved and 
( )1−= MdL  is the total length of the array. Equation (6) shows that, for a given sensor 

spacing, increasing the number of array sensors (and therefore the array length) results in 
a finer resolution in k . 

DERIVATION OF THE POWER REFLECTION COEFFICIENT FROM THE NOISE SPATIAL COHERENCE 

FUNCTION 

The spatial coherence function of the pressure field ( )tp ,r  between two points in space 

1r  and 2r  is defined as the ensemble average of the product ( ) ( )21 rr ∗
ωω pp : 

(7)  

where ∗  indicates complex conjugate and ( )rωp is the coefficient of the Fourier 
expansion of ( )tp ,r  at angular frequency ω . To make an explicit link to beamforming, 
element ( )ji,  in ωC  is given by ( )jiC rr ,ω . 

Using a ray-based approach Harrison derived a formula for the spatial coherence function 
of surface generated noise in the ocean, which for the case of two hydrophones joined by 
a perfectly vertical line and separated by a distance z is written [Harrison, 1996]: 

 

(8)  

In Eq.(8) rθ , sθ  and bθ  are the ray angles at the receiver, the surface, and the bottom (see 
Figure 1); cs  and ps  are the complete and partial ray-path lengths; ω  is the angular 
frequency; c  is the sound speed at the receiver in the medium, and R  and sR  are the 
bottom and surface power reflection coefficients. For the sake of simplicity, the 
dependence of the reflection coefficients on frequency will not be indicated explicitly. 
Note that a  is the power attenuation per unit length. The model assumes that the 
hydrophones are “close”, so the ray paths and the sound speed are unambiguously 
defined. Now let: 
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(9)  

Where λ  is the signal wavelength; then 2)sin(0 πλθ <=< kar  gives the bounds 
λ10 << k . Note that Eq.(9) defines k  as a scaled vertical wavenumber at the receiver: 
π2zkk = .  

Eq.(8) is general enough to include the effects of volume absorption and a sound-speed 
profile in the water column. With some algebraic manipulation and moving Eq.(8) to the 
k  domain by means of the Fourier transform, we were able to prove that ( )kCω , the k -
spectrum of the coherence function, is split into a portion ( )k+F , which is nonzero only 
for positive k  values, and a portion ( ),k−F  which is nonzero only for negative k  
values, and that ( )kR  can be computed as the ratio: 

(10)  

where the specific form of ( )ksc~  and ( )ksp~  depends on the sound-speed profile. Since 
negative values of k  correspond to 0<rθ  and positive values of k  correspond to 0>rθ  
the result in Eq.(10) is reminiscent of the method for estimating R  described by Harrison 
and Simons [Harrison, 2002]. They derived it through an energy-flux argument, whereas 
here a frequency-wavenumber domain derivation is presented. 

SYNTHETIC-ARRAY PROCESSING 

When working with array data, measurements are only available at the locations of the 
sensors, so the coherence function ( )zCω  is sampled at discrete intervals along the z  
axis, and the Fourier transform mentioned above must be interpreted as a discrete Fourier 
transform (DFT). As shown in Eq.(6), increasing the array aperture results in better 
resolution in the k  domain. This results in increased angular resolution in the 
beamformer output, which translates into better estimation of the seabed bottom loss, but 
it comes at the price of physically increasing the array length. An alternative approach is 
synthetic-array processing, which is based on the idea of using measurements from a 
short array to approximate the CSD matrix of a longer array by exploiting the physical 
properties of ( )zCω . This section illustrates the procedure to obtain this “augmented” 
covariance matrix. 

First, note that the dependence of ( )zCω  on the hydrophone-pair depth h  appears 
implicitly in Eq. (8) in the difference between cs  and ps ; its effect is quantified by the 
exponential correction factor in Eq.(10). The form of the exponential factor is such that at 
steep grazing angles the effect of sensor depth is minimal, while at shallow grazing 
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angles the correction factor is minimized by positioning the array close to the bottom. 
Furthermore, it has been theoretically proved and verified against experimental data for 
both deep [Liggett, 1966] [Barclay, 2013] and shallow water [Buckingham, 1980] 
[Harrison, 1996] that at sufficient distance from the waveguide boundaries, ( )zCω  
depends mostly on the distance between the hydrophones, rather than their absolute 
position in the water column. 

The spatial stationarity of ( )zCω  implies that equally-spaced hydrophones have the same 
coherence function, regardless of their position in the array. For the CSD matrix ωC , this 
means that, besides being Hermitian by construction, the matrix is Toeplitz. Synthetic-
array processing exploits the Hermitian-Toeplitz structure of ωC  to produce an 
approximation to the CSD Matrix of an array with a higher number of elements: For an 

−M element physical array, the positions on the 1−M  upper and lower diagonals of an 
“augmented” MM 22 × CSD matrix can be filled in accordance with the Hermitian-
Toeplitz structure as shown in Figure 2. 

In this study, as a first approximation, the remaining elements are filled with zeros, which 
is supported by the fact that the noise-only coherence function decays with increasing 
hydrophone spacing [Buckingham, 1980] [Harrison, 1996]. Therefore, if the number of 
elements in the array is sufficiently high, the error introduced by this approximation can 
be relatively small. However, it is still important to point out that the discontinuity in 
each row between the first or last nonzero element and the neighboring zero is not 
observed in real CSD matrices and can introduce artifacts in the estimation of the bottom 
loss, especially at low frequencies or for short arrays, as the wavelength becomes 
comparable to the array length (see Figure 3). To minimize these effects, it proved 
beneficial in this study to smooth the transition by applying an appropriate taper to the 
nonzero portion of each row. 

 

 

 

	
  

Figure 2: CSD matrix “augmentation” for a 3-element array ( 3=M ). The 
augmentation step “T” is possible under the Toeplitz assumption and reduces 

significantly the number of arbitrary values in the augmented matrix. 
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Figure 3: Normalized magnitude of the first row of a cross spectral density matrix 
synthesized by OASN at 2020Hz (top), 4518Hz (center) and 5996Hz (bottom) for a 

conventional beamformer (CBF) with 32 and 10 physical sensors, and for a synthetic-
array processor (SAP) with 5 physical sensors, extended to 10 sensors. The 

approximation introduced by the zeros becomes poorer at the lower frequencies.  

WORK COMPLETED  
A new derivation in frequency-wavenumber domain of the reflection coefficient from the 
array spatial-coherence function has been developed, and synthetic-array processing has 
been formulated, tested in simulation and published [Publication #1]. The application of 
synthetic-array processing to measured experimental data has been presented at the 21st 
International Congress on Acoustics (June 2013, Montreal, Canada) [Publication #2]. 

RESULTS 

BOTTOM-LOSS ESTIMATION FROM MEASURED DATA 

The study included a preliminary phase [Publication #1] in which the synthetic-array 
processing was tested on CSD matrices produced by the OASN noise-simulation module 
of the OASES package [Schmidt, 2004], which implements a full wave solution based on 
wavenumber integration for horizontally stratified media. The bottom-loss estimates 



shown in this section are obtained by processing array data acquired during three separate 
experiments by the NATO-STO Centre for Maritime Research and Experimentation 
(CMRE — formerly NATO Undersea Research Centre). The dataset identifiers used in 
this paper are reported in TABLE I, together with the basic features of the array. 

 Datasets and array basic features – all deployments were drifting, TABLE I.
design frequency assumed at s/m1500=c . 

Dataset ID Num. of 
elements 

Spacing (m) Sampling freq. 
(Hz) 

Design freq. 
(Hz) 

MFA-03 32 0.18 12000 4166 
MFA-04 32 0.18 12000 4166 
VLA-04 32 0.50 6000 1500 

The CSD matrices are obtained from the Fourier transform of the acoustic data as 
indicated in Eq.(4), then used as ωĈ  in Eq.(5) to implement a conventional beamformer. 
The results from Eq.(5) are then used to compute R̂  as in Eq.(2), which is in turn 
substituted for R  in Eq.(1), giving the bottom-loss estimate. 

The bottom-loss profiles shown in Figure 4 refer to 5-minute averages from the MFA-03, 
MFA-04 and VLA-04 data, respectively. In all cases, analysis of the beam-power plots 
showed strong surface noise, noise notch and no discernible interferers. The two CBF 
curves correspond to profiles obtained using the full array (32 elements), and a shorter 
version composed of the first 16 elements. No ground truth is available for these data, so 
the estimate from the longer array is assumed to be the better one. The CBF curves show 
evidence of a marked degradation in angular resolution, in the case of the shorter array, in 
the form of less pronounced, wider peaks and valleys, and a generally lower loss 
estimated towards endfire, where the beams become wider. The SAP curves correspond 
to profiles obtained using only the first 16 elements of the array, but “augmenting” the 
CSD matrix to 3232×  elements by synthetic-array processing. The curves appear largely 
immune to the degradation experienced by the physical 16-element array, very closely 
resembling the performance of the 32-element physical array. Note that, given the larger 
inter-element spacing, the frequencies in the VLA-04 case are lower than in the others, 
but CBF and SAP compare in the same terms. 
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Figure 4: Bottom loss profiles computed from two 5-minute averages: MFA-03 data at 
2766Hz (a) and 2250Hz (b), MFA-04 data at 3070Hz (c) and 3234Hz (d), and VLA-04 
data at 1313Hz (e) and 972Hz (f): Conventional beamforming for 32-element and 16-
element physical array vs. 16-element synthetic-array processor. The latter displays 

much reduced loss in angular resolution. 

IMPACT/APPLICATIONS  
This work may have a significant impact on several Navy sonar systems (e.g., ASW, 
MCM, underwater acoustic communications). Knowing the seabed properties will 
improve at-sea situational awareness by being able to accurately predict acoustic 
propagation. And, because this is a passive method it can be designed into a system used 
for covert activities, low power applications and can be used even in environmentally 
restricted areas. 
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