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LONG-TERM GOALS  
 
Develop methods for deterministic and stochastic acoustic calculations in complex shallow water 
environments, specify their capabilities and accuracy, and apply them to explain experimental data and 
understand physical mechanisms of propagation. 
 
OBJECTIVES    
 
(A) Treat propagation from narrowband and broadband sources over elastic and poro-elastic sediments, 

and incorporate realistic bathymetric, topographic, and geoacoustic variations. 
 
(B) Quantify acoustic interactions with physical features in the ocean volume and with geoacoustic 

features of the ocean sediment, and analyze and interpret experimental data.  
 
APPROACH      
 
(A) Develop efficient and accurate parabolic equation (PE) techniques for propagation through 

heterogeneous sediments.  Treat range dependence and sediment layering by single scattering and 
energy conservation methods.   Benchmark results using data and special high-accuracy solutions. 

 
(B) Construct representations for ocean environmental and geoacoustic variability using data and 

parametric models.  Determine acoustic fields with PE, normal mode, and other approximation 
methods.   Use experimental data and computational results to assess propagation mechanisms.   

 
• Principal collaborators:   Rensselaer PhD students, Dr. Michael Collins (NRL), Drs. James 

Lynch, Timothy Duda, and Ying-Tsong Lin (WHOI), Dr. Allan Pierce (BU, retired), and recent 
Rensselaer PhD graduates.   
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WORK COMPLETED      
 
(A) Propagation model development 

 
(1) Accurate calculations for range-dependent elastic media and applications 
• Validation of a recent elastic PE method, designed for problems with range-dependent 

bathymetry, variable thickness sediment layers, and topographic variations and for applications 
to beach, island, and coastal problems, is obtained [1] by comparing results from accuracy 
benchmarks and model environments with large sound speed changes and waves on range-
dependent elastic interfaces.   

• One application of the method is to shallow regions with partially consolidated sediment layers 
that are thin and have low shear speeds [2], which can be treated by modeling the layers as 
transitional interfaces and enforcing suitable conditions.   

• Another application and extension is to variable ice cover in polar regions [3], where 
particularly strong effects on transmission loss occur when the surface ice terminates or 
regenerates along the propagation direction.   
 

(2) New capabilities for elastic and poro-elastic sediments  
• Range-dependent transversely isotropic elastic sediments, which are a feature of coastal 

regions, are handled by a new PE formulation [4] that allows the significance of anisotropic 
effects on propagation to be evaluated.   

• An initial propagation model for treating weak range dependence in transversely isotropic 
poro-elastic sediments [5] demonstrates that PE methods are feasible for these environments, 
and also indicates the influence of anisotropy.  

• Propagation variables and computational techniques, designed for range-dependent elastic-
layer environments, are generalized to poro-elastic sediments [6], for which computational 
results agree with range-independent benchmark cases and demonstrate capabilities for 
sediments involving both elastic and poro-elastic layers. 

 
(B) Propagation mechanism assessment 

 
(1) Specification of nonlinear internal wave effects 
• An acoustic mode propagating adiabatically across a nonlinear internal wave (NIW) at small 

incident angles with the wave front may produce horizontal Lloyd mirror interference patterns, 
as predicted and observed by other researchers, and the patterns have especially interesting 
features [7] when the NIW front has curvature.       

• An adiabatic-mode transport theory is used to develop a scattering model for acoustic energy 
inside a NIW duct, in which wave front segments are treated as scattering elements [8] and a 
modified diffusion equation describes the evolution of averaged intensity and its dependence 
on environmental and acoustic parameters. 

• Calculations from the modal transport theory can determine how intersecting NIW fronts 
influence average intensity [9], depending on the orientations of the fronts and on the 
asymmetry of individual scattering elements.  
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(2) Propagation dependence on attenuation in sandy-silt sediments 
• A parametric description of archetypical shallow-ocean waveguides facilitates development of 

new approximations for modal attenuation coefficients [10], and their frequency behavior 
corresponds to results of calculations for more realistic waveguides. 

• Comparisons between modal attenuation coefficients obtained from Gulf of Mexico data and 
from new approximate formulas were performed after identifying a relevant subset of 
measured sound speed profiles [11], and the physical mechanism for variations in the 
attenuation coefficients is explained. 

• Expressions for averaged transmission loss in range-independent waveguides, in terms of 
environmental and acoustic parameters, are derived from mode theory [12], and they reduce to 
well-known results of Rogers and others for high frequencies and either isospeed or constant-
gradient sound speed profiles.   
 

(3) Card-house structure of high-porosity marine mud  
• Electric dipoles on bubble surfaces with normally-oriented moments do not produce an 

interaction force between bubbles, and this conclusion, which evidently holds for non-spherical 
bubbles and non-strictly-normal moments [13], has implications for shapes and properties of 
bubbles observed in marine mud.  

• A key hypothesis of the card-house model is that based on their chemical, electrical, and 
material structure, mud platelets behave like electric quadrupoles, so that estimates for shear 
wave speed can be calculated [14] by finding the effective shear modulus of the hinged joint 
formed by two rigid platelets, which are attached end-to-face in forming the card-house. 

• Although assuming that platelets are elastic rather than rigid is a better interaction model, it is 
found that the calculation for the effective shear modulus leads to an unphysical singularity 
[15] because of the end-to-face attachment.   

• The best platelet-interaction model accounts for elasticity and for end-to-face bonding across a 
small channel between the platelets, rather than strict attachment, and the calculation of the 
effective shear modulus produces shear speed estimates [16] of approximately the same size as 
measured for high-porosity marine mud. 

• Estimates of the important parameter porosity are found by hypothesizing that card-houses 
grow by an idealized process (diffusion-limited cluster-cluster aggregation) that is of fractal 
type [17], which is validated by finding a fractal dimension for the process and comparing with 
results determined from observations of an aggregation experiment.  

 
RESULTS (from two selected investigations)     
 
(A) Accurate and efficient propagation calculations are necessary for ocean acoustic data analysis and 

other applications involving shallow water waveguides with range-dependent, poro-elastic 
sediment layers.  The importance of porosity and elasticity are that they provide mechanisms to 
significantly change acoustic intensity and phase, by transferring energy between compressional 
and shear modes and by producing increased attenuation.  One major computational challenge is 
handling sediments with relatively small values, or large changes, of geoacoustic parameters such 
as porosity, shear speed, and layer thickness.  For poro-elastic sediments our approach employs the 
most widely used physical model, due to Biot.  The only published poro-elastic PE has too many 
limitations on parameter values, even when sediment anisotropy is permitted [5].   Generalizations 
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of recent progress for elastic media, including accurate capabilities for complex environments with 
range-dependent interface waves, large changes in sediment parameters [1], and acoustically thin 
layers [2], are needed for layered poro-elastic sediments. These advances relied on developing 
different formulations for dependent variables and more accurate stair-step approximations for 
range-dependent sediment parameters, the latter by inserting artificial interfaces to reduce the sizes 
of their jumps.  For poro-elastic sediments a complication is that three dependent variables are 
required rather than two, and effective new variables were devised for layered range-dependent 
environments [6].   The approach was benchmarked for multi-layered poro-elastic sediments, 
showing excellent agreement with results from the wavenumber integration code OASIS.  In 
addition, the new method has capabilities that are necessary for applications and are also 
computationally challenging for poro-elastic sediments, such as interface waves which physically 
correspond to Scholte waves at water-elastic interfaces.  Finally, an important feature for 
propagation methods is that they perform well for small or large limiting cases of geoacoustic 
parameter values. For instance, as shear speed values become small in elastic sediments, 
computational instability arises because the fluid limit is singular in the governing equations.  In 
contrast, although the porosity dependence in the Biot sediments is complicated, on physical 
grounds it should not be singular.  Consequently, a strenuous test for a poro-elastic PE is that 
results for porosity becoming small should closely approximate those from an elastic sediment.     
The top panel of Figure 1 shows transmission loss calculations at depth 8 m for a high-frequency 
range-independent example, with a 1 kHz source in the middle of a 10 m fluid layer overlying a 1 
m thick upper sediment layer, which in turn overlies an elastic half-space.  The solid curve is the 
solution for a poro-elastic upper layer, with porosity 0.4 that models unconsolidated sandy 
sediments. The dashed curve is loss for the environment with the upper layer elastic (porosity zero) 
and the same parameter values as corresponding ones in the poro-elastic case.  Disparities in the 
two curves demonstrate that the porous structure in the relatively thin upper layer significantly 
influences loss in the water.  The middle panel is the analogous comparison when the porosity is 
0.2, as in more consolidated sand.    The loss patterns are still different but are smaller than in the 
top panel.  A series of calculations were performed for decreasing porosities, and the lower panel is 
for the value 0.02.  Here the solutions for the elastic and barely-porous layers are very close.  These 
curves illustrate how propagation results from environments with poro-elastic layers of decreasing 
porosity smoothly approach those for a limiting elastic layer. Importantly, it also illustrates that the 
new PE solution has capabilities for accurate propagation calculations in multi-layered 
environments involving water and both poro-elastic and elastic sediments.  Future work includes 
improving its capabilities, accuracy, and efficiency for range-dependent problems, along with 
additional benchmarking.     
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Figure 1 (next page).   Propagation in layered poro-elastic sediments is accurately determined using 
a new PE method with a novel formulation in physical variables.  Benchmarking the solution has 
shown its accuracy over wide ranges of geoacoustic parameter values.  An important requirement 

for any method to handle poro-elastic sediments is that solutions for small values of porosity should 
approach those for an elastic sediment. 

 
Computations were performed for a series of range-independent environments, all with a 10 m 
isospeed (cw = 1500 m/s) water layer that overlies a thin (1 m) sediment layer, which is above an 

elastic half-space. The geoacoustic parameters of the half-space are density ρs = 3.0 gm/cm3, 
compressional and shear sound speeds cp = 2400 m/s and cs = 1200 m/s, and attenuations βp = 0.3 

dB/λ and βs = 0.2 dB/λ   In Environment A the thin layer is elastic, with ρs = 2.65 gm/cm3, cp = 1698 
m/s, cs = 119 m/s, βp = 0.76 dB/λ , and βs = 1.46 dB/λ .  A series of N environments labeled BN have 

poro-elastic thin layers, with different porosities αN and the same values of all other Biot 
parameters; ρs , cp1, βp1, cs , and βs  are the same as corresponding values in Environment A, and the 
slow compressional wave speed and attenuation are cp2 = 1023 m/s and βp2 = 10.2 dB/λ .  The poro-

elastic layer values are taken from the sand tank at the University of Texas Applied Research 
Laboratories.  The high βp2 value reflects the high attenuation of the Biot slow wave. 

 
On the next page, transmission loss (TL) curves (dB re: 1 m) are shown between 10 and 50 dB over 
a range of 100 m, for a 1000 Hz source at mid-depth (5 m) in the water.  Figure 1(a) compares the 

dashed curve for Environment A and the solid curve for Environment B1, with porosity α1 = 0.4 
corresponding to an unconsolidated sandy sediment.  Both curves show multiple modes and agree in 

pattern for the first half of the range, with mostly higher losses from the poro-elastic layer in 
Environment B1.  In the second half of the range the patterns clearly differ, with Environment B1 
having peak-to-peak losses 5 to 10 dB higher than Environment A.  These disparities in the curves 

demonstrate that the porous nature of the relatively thin upper layer (about one acoustic 
wavelength) significantly influences TL in the water.  In Fig. 1(b) the solid curve is for Environment 

B2 with thin-layer porosity α2 = 0.2, corresponding to more consolidated sand.    The solid and 
dashed curves have more similar patterns than in Fig. 1(a) over the entire range, with maximum 

peak-to-peak differences of 4 dB.   
 
 Additional results were obtained for other environments with porosity decreasing toward zero.  An 
example is Fig. 1(c), where the solid curve from Environment B3 has small porosity α3 = 0.02. The 
TL patterns for Environments A and B3 are very close, with maximum peak-to-peak differences of 
about 1 dB over nearly all the range.  From these and other calculations, we conclude that the new 

PE solutions for poro-elastic layers with decreasing porosity smoothly approach those for the 
limiting elastic layer.  Furthermore, the method is capable of handling multi-layered ocean 

environments including both poro-elastic and elastic sediments. 
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(B)  Conceptual understanding and detailed knowledge of geoacoustic properties for shallow water 
sediments are essential for scientific and Naval applications.  Sand and silt sediments have been 
extensively investigated experimentally and theoretically, and can be handled for propagation 
calculations by fluid, elastic, or poro-elastic models.  In contrast for mud, and particularly for high-
porosity marine mud (HPMM), none of these correctly predicts or explains all the required 
properties. A critical metric for success is the estimate of shear sound speed, which is low in 
HPMM and is not predicted by any current physically-based model.   A major advance, proposed 
recently by Dr. Allan Pierce and the late Dr. William Carey, hypothesizes an aggregated card-
house structure for HPMM.  The key mechanism behind the model is the fact that each solid 
component, which is a thin platelet of clay minerals, has an electric charge distribution that mimics 
a distributed sheet of longitudinal quadrupoles that are aligned transversely to the platelet.  As a 
result platelets repel for end-to-end or face-to-face contact, and attract end-to-face.  This behavior 
causes the formation of card-house structures, most likely via a process called cluster-cluster 
aggregation that is limited by platelet diffusion.  The aggregates have pores wherein bubbles may 
form with non-spherical shapes, which are consistent with bubble interaction properties [13].  The 
aggregates support weak shear stresses, and assumptions about the electrical and mechanical 
interactions of platelets permit estimates of the effective shear modulus and shear speed cs.  The 
effective shear modulus of an aggregate is found for its constituent subunits, which consist of two 
interacting platelets.   The top left panel of Figure 2 illustrates the two-platelet interaction, and as 
suggested by the schematic, the platelets are allowed to bend (slightly) because of their (high) 
elastic modulus [15].  Between the platelets a small channel of thickness d, smaller than the platelet 
thickness h, is hypothesized that enables ions to assist in bonding the platelets. Variations in the 
direction parallel to the line of interaction (the y-axis) are neglected, so that standard Euler-
Bernoulli bean theory can be applied in the x-z plane.   The top right panel illustrates a side view of 
the subunit.  A shearing force F is applied at the end of one platelet, producing a small shear 
displacement u(z) in the x-direction. The platelet is maintained in static equilibrium by distributed 
electrical moments mE(z) and by internal forces and moments.  Beam theory leads to a third-order 
differential equation for u(z), along with physically-based boundary conditions at the platelet ends.  
For relevant parameter values, the solution shows that the displacement acts as if the beam were 
rigid for most of the platelet [14].  That is, the electric quadrupole moment dominates the internal 
elastic moment, except near the channel z = d where the beam must bend to satisfy the interaction 
conditions [16].  From the maximum displacement the shear strain due to the shear force can be 
found, and then the shear modulus, and finally the shear speed.   The middle panel shows the 
expression for cs in terms of mud density, three physical constants, and six platelet parameters.  For 
those six, realistic variations in the values of three have little influence on the estimate of cs, while 
the other three – platelet thickness h, length L, and cation exchange capacity χ – have variations 
that do influence cs .  The bottom panel is a table in which the second column has representative 
values for these three quantities, for the most common types of clay minerals in HPMM.  For these 
minerals, kaolinite and smectite, the corresponding shear speed estimates are 13 m/s and 0.25 m/s.  
The third and fourth columns of the table show typical measured or estimated ranges of variability 
for the three quantities, and the sensitivity of cs estimates to their variations.  It is important to note 
that actual HPMM consists of more than one type of mineral, so that its effective shear speed 
would be a weighted average of those from its component minerals.  We conclude from results 
including those in the table that shear speed estimates are consistent with values of order 10 m/s 
that have been measured for HPMM.   Therefore, the card-house theory satisfies one critical test 
for its applicability.  Future work includes refining predictions of porosity [17] and formulating 
estimates for compressible and shear attenuations. 
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Figure 2 (next page).  The card-house theory for the structure of high-porosity marine mud can 
provide estimates for key geoacoustic parameters, including shear and compressional sound speed 

and porosity.  In particular, low estimates for shear speed are found as observed in data.  The 
mineral constituents of mud are modeled as thin platelets with transverse length and width L, 

thickness h, and small aspect ratio δ = h/L.  In seawater their electrical properties resemble sheets of 
uniformly-distributed longitudinal quadrupoles that are aligned transversely to the platelet.  

Consequently, platelets repel face-to-face and end-to-end but attract face-to-end, which causes card-
house like structures to form by an aggregation process and to support shear stresses.  The effective 
shear modulus of the structure is approximated by that of its constituent subunits, consisting of two 

interacting platelets.   
 

Fig. 2(a) shows a 3-D schematic of an idealized subunit, comprised of a platelet nearly vertical (the 
z-axis) that interacts along the center line (the y-axis) of a horizontal platelet.  The platelets have a 

large elastic modulus E so they may bend slightly.  A small gap of width d, less than h, is 
hypothesized between the interacting platelets to facilitate bonding.  No variation is assumed in the 

y-direction, so the interaction can be analyzed in the x-z plane. 
 

 Fig. 2(b) shows a schematic side view in the z-z plane of two interacting platelets.  The subunit 
responds to a force F in the positive x-direction with a small shear displacement u(z).  The subunit is 

maintained in static equilibrium by distributed moments per unit length mE(z) arising from the 
electrical forces of the quadrupoles and by internal forces and moments. Euler-Bernoulli beam 

theory leads to a third-order differential equation for u(z) with boundary conditions at z = d (above 
the gap) and z = L + d.  Solving for the displacement shows that it corresponds to a rigid 

approximation for most of the platelet.   Therefore, the electrical response to the quadrupoles 
dominates the response to the internal elastic forces, except near the gap where the beam must bend 

to satisfy the interaction boundary conditions.  
 

Fig. 2(c) is the expression for the shear speed cs of high-porosity marine mud from the card-house 
theory. The factor multiplying the square root arises from the quadrupole moment per unit area on 

the platelet. This factor includes two physical constants, Avogadro’s constant NA and electron 
charge e, plus four platelet parameters: density ρplatelet , thickness h, cation exchange capacity χ , 

and the inverse e-folding distance κ of its electric field. The quantity under the square root, which is 
the rest of the shear modulus divided by mud density ρmud , has the permittivity of seawater ε and two 

more platelet parameters:  length L and gap width d, taken as κ (-1)  ≈ 0.45 nm.  Of the six platelet 
parameters, physically meaningful variations in values of only three of them (h, L, and χ) can 

significantly influence cs . 
 

Fig. 2(d) is a table with h, L, χ, and cs in its first column.  The second column shows a representative 
value for each parameter in two clay minerals, kaolinite and smectite, which are the most common 

types in marine mud.  These values produce 13 m/s for kaolinite and 0.25 m/s for smectite.  The 
third column shows typical ranges of values for h, L, and χ in the two clay types.  The fourth column 

shows the range of cs values using the range of values for one parameter and the representative 
values for the others.  Over all rows in column four, cs varies from 3 to 41 m/s for kaolinite, and 

from 0.01 to 2 for smectite.  Mud consisting of more than one type of mineral is expected to have a 
shear speed that is a weighted average of those from its constituents.  We conclude that estimates for 
the shear speed of high-porosity marine mud from the card-house theory are consistent with values 

of order 10 m/s that have been measured. 
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PAMAMETERS Representative Value Range of  Values Range of  cs Values 

Platelet Thickness Kaolinite:  0.05 0.03 – 0.07 3 – 34 
h  ( microns ) Smectite:  0.0055 0.001 – 0.01 0.01 – 2 

Platelet Width Kaolinite:  0.9 0.5 – 1.3 6 - 41 
L  ( microns ) Smectite:  0.9 0.5 – 1.3 0.15 – 1 

Cation Exchange Capacity Kaolinite:  0.09 0.03 – 0.15 4 - 22 
χ  ( moles/kg ) Smectite:  1.2 0.8 – 1.5 0.2 – 0.3 
Shear Speed  Kaolinite:  13   
cs  ( m/sec ) Smectite:  0.25   

     
                                                                           (d) 
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IMPACT/APPLICATIONS     
  
New or enhanced capabilities are provided for propagation predictions that depend on physical 
properties of shallow water sediments, including layering, elasticity, porosity, and anisotropy.  Range-
dependent variability from bathymetry, topography, and sediment interfaces can be treated in 
propagation calculations.   Intensity attenuation and coherence statistics that result from environmental 
fluctuations and other experimental variability can be found more efficiently.   Data analyses and 
model comparisons allow specification of the roles of key physical mechanisms, such as linear or 
nonlinear frequency dependence of sediment attenuation, sediment heterogeneity or homogeneity, 
water column or bathymetric variability, water column scattering or refraction, and vertical or 
horizontal mode coupling from nonlinear internal waves and bathymetry.  Results from modeling and 
data analyses of experiments, particularly experiments off the New Jersey Shelf, are partly aimed at 
improving shallow water sonar systems and predictions.  Propagation model implementations, analysis 
tools, and data representation techniques are distributed to university, laboratory, and other 
research/development groups. 
 
RELATED PROJECTS      
 
• Continuing projects with Dr. Michael Collins include [4], extensions of [6], and a monograph on 

new parabolic wave equation models and applications [19], for which the principal research results 
are nearly complete. 

 
• In addition to investigations with Drs. James Lynch, Y.-T. Lin, and Timothy Duda [9]-[11] of 

propagation effects from waveguides generated by nonlinear internal waves, other projects are 
under way, including extensions of curvature effects in internal wave ducts [18].  Research under 
this grant is related to the WHOI-led MURI project, “Integrated Ocean Dynamics and Acoustics.” 

 
• Current research with Dr. Allan Pierce [13]-[17] focuses on propagation variability from sediment 

geoacoustic structure and attenuation, and on quantifying structural and acoustic predictions from 
his card-house theory of high-porosity marine mud.   
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