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LONG-TERM GOALS 
Our long-term goal is to study the sensitivity behavior of acoustic phase arrival times, as an alternative 
observable offering increased resolution (compared to peak arrivals), for the recovery of sound-speed 
perturbations in the ocean. 

OBJECTIVES 
The objective of this work is to study the behavior and sensitivity of ocean acoustic phase arrival times 
due to sound-speed changes, in comparison to those of peak arrival times. The aim is to derive 
perturbation relations and sensitivity kernels connecting sound-speed and travel-time perturbations, 
and, further, to study the behavior of phase arrival times and its predictability, depending on 
propagation and signal characteristics. 

APPROACH 
Phase arrival times are mathematically modeled as stationary points - times of constant phase - of the 
acoustic pressure. Using this definition, expressions for the corresponding travel-time perturbations are 
derived and the sensitivity behavior of phase arrival times, due to sound speed changes, is studied. The 
resulting sensitivity kernels (Born-Frechet kernels) for phase arrival times are compared to the 
corresponding travel-time sensitivity kernels for peak arrivals.  

WORK COMPLETED 
Up to the present the following tasks have been completed: Mathematical modeling of finite-frequency 
phase arrival times and derivation of perturbation expressions. Derivation of 1D, 2D and 3D sensitivity 
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kernels for phase arrival times and comparison with travel-time sensitivity kernels for peak arrivals. 
Comparison of actual vs. predicted (based on perturbation expressions and sensitivity kernels) 
displacements of phase and peak arrivals. 

RESULTS 

Mathematical modeling and perturbation expressions 

The complex pressure at the receiver in the time domain [1] can be written in the form 
ϕ ( )  i tωp t = a t e  i t e 0 ,( )  ( )  (1)  

where t  denotes time, a t( ) is the amplitude (arrival pattern), ϕ( )t is the phase and ω0  is the central 
(carrier) circular frequency of the source. The demodulated pressure results after removal of the carrier 
frequency and can alternatively be expressed in terms of its real and imaginary parts, u t( )  and v t( ) : 

( )  = ( )  ϕ ( )  = u t  + i ( )p% t  a t e  i t  (  )  v t  (2)  

The above quantities a t( ) , ϕ( )t , u(t), and v t( ) depend on the source/receiver location as well as on 
c x ( )the sound-speed distribution ( )  , where x is the spatial variable. Thus, perturbations δc x  of the 

sound speed give rise to perturbations in arrival amplitude, arrival phase and arrival times. Peak arrival 
times are defined as the times of the local maxima (peak arrivals) of the arrival pattern: a&( ;  )  τ P c = 0 . 
As the sound speed changes the peaks of the arrival pattern are deformed and displaced, i.e. peak 
arrival times change as well. The resulting perturbation relations reads [1] 

δ a&1( ;  ;  τ P c δc) u  u  δ 1 + u  u  δ &1 + v  v  &δ 1 + v  v  δ 1δτ = −  = −
& & 

,  (3)  P 2 2&& τ P u && v v&& a( ; )  c & + uu + & + v 

where the quantities u , v and their time derivatives are considered at the background state ( c ) and 
their 1st-order perturbations are due to δ c . 

Phase arrival times can be defined in different ways for the complex pressure p( )t  or for its 
demodulated form p% ( )t . In the following phase arrival times on the modulated pressure are considered 
– for demodulated phase arrival times see Ref. [3]. The modulated phase can be written as 

ψ ( )t = ϕ( )t + ω0t (4)  

Due to the term ω0t , the phase ψ ( )t is rapidly increasing with time. Phase arrival times τψ  are defined 
as fixed-level crossings of the modulated phase ( ) γ , where γ is a fixed threshold (e.g. γ = 2nπψ τψ = 

corresponds to maxima, γ = π / 2  + 2nπ to zero crossings of the real part of p( )t ). By applying the 
definition at the background and perturbed state and using a Taylor expansion of the latter we obtain 

δϕ δ − δu v  v u  δτ = −  = −   (5)  
2 2ψ ϕ ω& + uv v& − u& +ω (u + v )0 0 

By comparing eqs. (3) and (5) we see that the perturbation expressions for peak and phase arrival are 
different, so the two time observables will behave differently, in general. This is quite anticipated since 
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the two observables correspond to different functions, peak arrival times to the amplitude function 
a t( ) and phase arrival times to the phase functionψ ( )t . 

Sensitivity kernels of phase arrival times 

The complex pressure p at the receiver in the time domain, and its perturbation δ p  due to 
perturbations of the sound speed distribution, can be expressed through the inverse Fourier transform 
in terms of the signal s ( )P ω emitted by the source in the frequency domain and the frequency-domain 
Green’s function G ( ;  ;  ω c x x⎟ )  and its perturbation δG ω c c; ⎟( ; ;  δ x x ) , respectively sr r s sr r s 

+∞ +∞
1 i tω d 1 i t 
p( )t = Ps (  )  (  ;  ;  ω c ⎟ s )e ω δ ( )  = P (  )  G(  ;  ;  c; r⎟ )e ω d∫ ω G x xr and p t ∫ s ω δ  ω c δ x xs ω (6)2π 2π
−∞ −∞ 

where xs  and xr is the source and receiver position vector. The perturbation of the Green’s function 
can be expressed through the first Born approximation [1], which in 3-dimensional space reads 

δc( )xω c ⎟ 2  ( ; ;  x s ) 3 ω c x x  x .δG3D ( ;  ;  c δ ;x xr s ) =  −  ω G3D ω c ⎟x G D (  ;  ;  r⎟ ) dV  (  )   (7) 2 ∫∫∫ 3 xV c ( )  

Assuming a range-independent background environment the 3-dimensional Green’s function can be 
written in terms of normal modes [2] 

−iπ /4  Me ϕ ( )  ( )  m zs ϕm z −ikm r( ,  |  z )G r z  = ∑ e ,  (8)  3D s ρW 8π m=1 k rm 

where ρW is the water density and km and ϕm ( )z are the real eigenvalues and the corresponding 
eigenfunctions of the vertical Sturm-Liouville problem. By substituting eq. (8) into eq. (7) and using 
the perturbation relations, eqs. (3) and (5), expressions of the form 

δτ K (3D) ( )x δc( )dV  xτ x ( )= ∫∫∫ (9) 
V
 

(3D)
can be obtained, where Kτ ( )x is the corresponding 3-dimensional travel-time sensitivity kernel, 
describing the effect that a sound-speed perturbation at location x will have on the travel time τ  of 
interest. A similar expression can be obtained for the 2-dimensional sensitivity kernel based on the 2-
dimensional Green’s function [2]. 

The 1-dimensional vertical sensitivity kernel, corresponding to range-independent sound-speed 
perturbations, can be obtained by applying perturbation theory to the vertical Sturm-Liouville problem. 
The resulting perturbation expression for the 3-dimensional Green’s function, eq. (8), reads 

⎡ ⎤−iπ /4 M M −ikmre mn mn 1 ⎞U Q ⎥ e⎢ Q  U  ⎛ mm mmδG3D = ∑ ∑  + ⎜ + ir  ⎟ , (10)
ρW 8π ⎢ Λ 2k k ⎥ k rm=1 n=1 mn ⎝ m ⎠ m m⎢⎣n m≠ ⎥⎦ 

where mn km 
2 − kn 

2  and Λ =  
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ϕ ( )  ( )  +ϕ z ϕ (  ) ,  nz ϕ z ( )  z ≠ mh ⎧ m S n n S mϕ ( )z′ ϕ (  )  ⎪z′ 2 m nQmn = −2ω 3 Δc  z  (  )  ′ dz  ′ , Umn = ⎨ 1 (11)∫ ( )′ − ϕ ( )z ϕ (  ) ,  nc z  z = m0 ⎪ m S m⎩ 2 

where h is the water depth. By combining this with the perturbation relations, eqs. (3) and (5), 
expressions can be obtained for the travel-time perturbations of the form 

h Dδτ = ∫ Kτ
(1 ) z  (12)  ( )δ c  z  dz  ( )

0 

(1D)where Kτ z is the corresponding 1-dimensional (vertical) sensitivity kernel, describing the effect ( )  
that a change of the sound-speed profile at depth z will have on the travel time τ  of interest. 

Fig. 1.  Linear sound-speed profile 

Some numerical results for travel-time sensitivity kernels of peak and phase arrival times are presented 
in the following.  A simple deep-water environment characterized by a linear sound-speed profile, see 
Fig. 1, is selected. Source and receiver are taken at a depth of 150 m and horizontal distance of 30 km, 
whereas the water is 2500 m deep, bounded by an absorbing bottom. The acoustic signal is a Gaussian 
pulse with central frequency 100 Hz and bandwidth 70 Hz (3-dB bandwidth). 

Fig. 2 shows at the top the 3D arrival pattern on the left and the pressure at the receiver in the time 
domain (real part) on the right. The lower panels show sections of the 3D travel-time sensitivity 
kernels corresponding to the 3 marked peaks (peak arrival times on the left and phase arrival times on 
the right) – sections with the vertical plane through the source and the receiver. The 3D arrival pattern 
contains six major peaks, the first three of which can be resolved as ray arrivals. The real part of the 
pressure on the right shows a modulated version of the arrival pattern with modulation frequency 
corresponding to the central source frequency, 100 Hz. The 3 marked phase arrivals on the right are 
selected to be closest – in time – to the selected 3 peak arrivals on the left.  

The sensitivity kernels of the peak arrival times are concentrated about the acoustic paths connecting 
the source and the receiver. Arrival 1 corresponds to a steep path with lower turning depth about 1300 
m – there is no upper turning depth since the sound speed profile is upward refracting. Later arrivals 2 
and 3 correspond to gradually shallower paths. The last arrival samples the upper 200m, with turning 
depth very close to the source/receiver depth (150 m). The situation is very similar in the case of the 
sensitivity kernels of the phase arrival times on the right. The travel-time sensitivity is prevailingly 
negative (blue color), still there are areas of positive sensitivity as well. The vertical extent of the 
sensitivity kernel appears slightly larger in the case of phase arrival times. Further the phase arrival 
time sensitivity values are larger. 
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Fig. 2. 3D propagation results at 30 km range.  Left: Arrival pattern (top) and sensitivity kernels 
(lower) for peak arrival times of marked peaks. Right: Acoustic pressure (top) and sensitivity kernels 

(lower) for phase arrival times of marked peaks. 

Fig. 3. Shows the corresponding propagation and sensitivity results based on the 2D Green’s function 
[2]. The arrival patterns are very similar to the 3D results of Fig. 1 even though there are small 
differences, mainly in the amplitudes. The 2D sensitivity kernels are limited on the 2D plane, and as it 
has been shown [2] they equal the marginals of the 3D kernels (integrals in the horizontal cross-range 
direction). The vertical sensitivity extent of the phase arrival times, on the right, appears to be 
significantly broader than that of the peak arrival times on the left. On the other hand, the sensitivity 
magnitudes of the two observables are comparable. Apparently, the large negative sensitivity values of 
the phase arrival times on the source/receiver vertical plane in Fig. 2 are compensated by the off-plane 
behavior. Fig. 4 shows the vertical sensitivity kernels (1D) of the peak arrival times, on the left, and 
phase arrival times, on the right, of the 3 peaks marked in Fig. 1. The calculations are based on the 3D 
Green’s function in a range-independent environment. The vertical extent of the travel-time sensitivity 
is larger in the case of phase arrival times (the high-sensitivity interval is broader), compared to that of 
peak arrival times. This is seen more clearly in the case of the last peak (bottom panels in Fig. 4). On 
the other hand the sensitivity magnitudes are comparable, and they are much larger for the late than for 
the early arrivals – note the different scales in the horizontal and vertical axes of the top panels in Fig. 
4. From these figures it becomes clear that the sensitivity behavior of the phase and peak arrival times 
is different. Even though the differences are small, they can cause large deviations in travel time 
behavior depending on the support of the sound-speed perturbations. 
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Fig. 3. 2D propagation results at 30 km range.  Left: Arrival pattern (top) and sensitivity kernels 
(lower) for peak arrival times of marked peaks. Right: Acoustic pressure (top) and sensitivity kernels 

(lower) for phase arrival times of marked peaks. 

Comparison of actual vs. predicted displacements of phase arrivals 

In the following, some results from the perturbation study of peak and phase arrivals are presented. 
The focus is on the predictability of actual perturbations using the vertical travel-time sensitivity and 
applying it directly on the sound-speed perturbations. Box-shaped sound-speed perturbations with 
vertical extent 100 m. Fig. 5 shows the actual travel-time perturbations of peak 1 (crosses) caused by 
sound-speed changes about the depth of 1400 m, close to the maximum sensitivity depth, in 
comparison with the 1st-order predictions based on the corresponding sensitivity kernels (solid lines). 
The predictions turn out to be successful in both cases, with the phase arrival times exhibiting slightly 
weaker perturbations, in agreement with the weaker sensitivity kernel in Fig. 4. 

Fig. 6 shows travel-time perturbations of peak 3 caused by sound-speed changes centred about the 
depth of 150 m, close to the maximum sensitivity depth. Even though the sound-speed perturbations 
are of the same vertical extent and magnitude as before the travel-time perturbations are much larger 
(note the different scales in the vertical axes in Figs. 5 and 6). The predictions based on the sensitivity 
kernels (solid lines) are again in good agreement with the actual travel-time perturbations (crosses) for 
both observables. The perturbation behavior  of phase and peak arrival times is almost identical in this 
case and this is in agreement with the very similar magnitude of the corresponding sensitivity kernels 
in Fig. 4 (bottom panels) at the depth of 150 m. 

In order to check the sufficiency of the sensitivity kernel description we select to apply perturbations 
around the depth of 100 m where the two kernels are different – the one for the phase arrival time takes 
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a value close to its negative maximum, whereas the kernel of the peak arrival times is much smaller. 
The results are shown in Fig. 7 and we see that the phase arrival time perturbations are nearly of the 
same magnitude as before, whereas those of peak arrival times are much weaker. The perturbation 
prediction based on the sensitivity kernels (solid lines) is good.  

Fig. 4: Normalized vertical sensitivity kernels for peak arrival times (left) and phase arrival times 
(right) of the 3 peaks marked in Fig. 2. 

IMPACT/APPLICATIONS 

The phase arrival times offer higher temporal resolution than peak arrivals, since their width is 
controlled by the central source frequency rather than the source bandwidth. Furthermore, while peak 
arrivals require broadband (low-Q) sources, phase arrivals can be resolved even in the case of smaller 
bandwidths, which means cheaper sources. The sensitivity and perturbation behavior of phase arrivals 
is in general different from that of peak arrivals, and large deviations may occur between the 
perturbations of the two observables, depending on the location (the spatial support) of the underlying 
sound-speed change. Phase arrival times exhibit good predictability in the studied cases, i.e. the first-
order predictions based on the sensitivity kernels lie close to the actual time perturbations. Thus, phase 
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arrival times offer a useful alternative to peak arrivals as observables for ocean acoustic tomography. 
The exploitation of peak arrival times requires dense sampling in time, in order to keep track of the 
phase (2π-ambiguity) as the ocean (sound speed) changes. 

Fig. 5: Actual (+) and predicted (line) travel-time perturbations for peak (left) and phase (right) 
arrival times for arrival 1 and sound-speed perturbations about 1400 m depth 

Fig. 6: Actual (+) and predicted (line) travel-time perturbations for peak (left) and phase (right) 
arrival times for arrival 3 and sound-speed perturbations about 150 m depth  

Fig. 7: Actual (+) and predicted (line) travel-time perturbations for peak (left) and phase (right) 
arrival times for arrival 3 and sound-speed perturbations about 100 m depth  

RELATED PROJECTS 

In the framework of NPAL (ONR contract N000140310182) Bruce Cornuelle and Matthew Dzieciuch 
have been exploring travel-time sensitivity kernels in range-dependent ocean environments. 
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