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LONG-TERM GOALS 

The ever increasing pace of improvement in the state-of-the-art high performance computing 
technology promises enhanced capabilities for the next-generation atmospheric models. In this 
project we primarily consider incorporating state of the art numerical methods and algorithms to 
enable the Nonhydrostatic Unified Model of the Atmosphere 
(http://faculty.nps.edu/fxgirald/projects/NUMA), also known as NUMA, to fully exploit the 
current and future generations of parallel many-core computers. This includes sharing the tools 
developed for NUMA (through open-source) with the U.S. community that can synergistically 
move the knowledge of accelerator-based computing to many of the climate, weather, and ocean 
laboratories around the country. 

OBJECTIVES 

The objective of this project is fourfold. The first objective is to identify the bottlenecks of the 
NUMA and then circumvent these bottlenecks through the use of: (1) analytical tools to identify 
the most computationally intensive parts of both the dynamics and physics; (2) intelligent and 
performance portable use of heterogeneous accelerator-based many-core machines, such as General 
Purpose Graphics Processing Units (GPGPU or GPU, for short) or Intel’s Many Integrated Core 
(MIC), for the dynamics; and (3) intelligent use of accelerators for the physics. The second 
objective is to share and extend the tools we use to develop code that is portable across threading 
APIs (achieved by using OCCA2 https://github.com/tcew/OCCA2) and has portable performance 
(by using Loop.py https://github.com/inducer/loopy). The features we are adding to OCCA2 and 
Loo.py under this project are targeted first to help our many-core acceleration of NUMA effort but 
should be generally applicable to many scientific computing codes from the general climate, 
weather, and ocean laboratories around the country. The third objective is to implement Earth 
System Modeling Framework (ESMF) interfaces for the accelerator-based NUMA mini-apps 
allowing the study of coupling many-core based components. We will investigate whether the 
ESMF data structures can be used to streamline the coupling of models in light of these new 
computer architectures which require memory access that has to be carefully orchestrated to 
maximize both cache hits and bus occupancy for out of cache requests. The fourth objective is to 
implement NEPTUNE (Navy Environmental Prediction sysTem Using the NUMA corE) as an 
ESMF component allowing NEPTUNE to be used as an atmospheric component in a coupled 
earth system application. A specific outcome of this objective will be a demonstration of a coupled 
air-ocean-wave-ice system involving NEPTUNE (with NUMA as its dynamical core), HYCOM, 
Wavewatch III, and CICE within the Navy ESPC. The understanding gained through this 
investigation will have a direct impact on the Navy ESPC that is currently under development. 

APPROACH 

Following the lead of various DoE labs (Swaminarayan 2011), we are adapting NUMA to 
accelerator-based many-core machines in a step-by-step process to achieve our first objective. At 
each step we are developing mini-apps which are self-contained programs that capture the essential 
performance characteristics of different algorithms in NUMA. This plan to partition the 
development of the heterogeneous architecture version of NUMA into small chunks of work that 
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can be handled somewhat independently will allow us to produce (at every stage of the work 
pipeline) a result that is beneficial not only to the NUMA developers and user groups but also to 
the larger climate, weather, and ocean community. The many-core mini-apps that will be develop 
will include: 

Dynamics 

Explicit-in-time CG a continuous Galerkin discretization of the compressible Euler 
mini-app with explicit time integration; 

Explicit-in-time DG a discontinuous Galerkin discretization of the compressible Euler 
mini-app with explicit time integration; 

Vertically Semi-Implicit CG a continuous Galerkin discretization of the compressible 
Euler mini-app with vertically implicit semi-implicit time integration; 

Vertically Semi-Implicit DG a discontinuous Galerkin discretization of the compressible 
Euler mini-app with vertically implicit semi-implicit time integration; 

Physics 

Moisture a parameterized moisture mini-app; and 

Radiation we intend to use the GPU implementation of radiation physics from the 
ESPC-RRTMGP group. 

Once the performance of a mini-app is accepted it will be considered for adoption into NUMA. 
Placing the kernels back into NUMA will be lead by Giraldo and his postdoctoral researcher Abdi. 
We will also make these mini-apps available to the community to be imported into other codes if 
desired. Wilcox is working closely with Warburton and his team to lead the effort to develop the 
mini-apps including hand rolled computational kernels optimized for GPU accelerators. These 
kernels are written “hand-written” in OCCA2, a library Warburton’s group is developing that 
allows a single kernel to be compile using many different threading frameworks, such as CUDA, 
OpenCL, OpenMP, and Pthreads. We are initially developing hand-written kernels to provide a 
performance target for the Loo.py generated kernels. Parallel communication between 
computational nodes will use the MPI standard to enable the mini-apps to run on large scale 
clusters. Using these community standards for parallel programing will allow our mini-apps to be 
portable to many platforms, however the performance may not be portable across devices. For 
performance portability, we, lead by Klöckner, are using Loo.py to generate OCCA2 kernels which 
can be automatically tuned for current many-core devices along with future ones. 

The second objective is to expand (as needed by the mini-apps) the OCCA2 and Loo.py efforts, 
lead by Warburton and Klöckner. These will be extended naturally in tandem with the 
requirements that emerge during the development of the mini-apps. We will take a pragmatic 
approach where features will only be added as they are needed by the mini-apps or will aid in the 
transition of the mini-app technology back into NUMA. For the sharing part of the objective, both 
OCCA2 and Loo.py are open source and can be downloaded from 
https://github.com/tcew/OCCA2 and https://github.com/inducer/loopy, respectively. They are 
operational and are ready to be evaluated for use in other projects. As it warrants, we will give 
presentations and demonstrations of the tools to help increase their adaption. 

3
 

https://github.com/tcew/OCCA2
https://github.com/inducer/loopy


The third objective, lead by Campbell and Wilcox, is to implement Earth System Modeling 
Framework (ESMF) interfaces for the accelerator-based computational kernels of NUMA allowing 
the study of coupling many-core based components. Once we have working mini-apps 
implementing a significant set of physics, we will coordinate with the “An Integration and 
Evaluation Framework for within the proposed ESPC Coupling Testbed” if it is deemed useful to 
have the mini-app to help test coupling of many-core components. 

The forth goal, lead by Campbell, is to implement NEPTUNE as an ESMF component allowing 
NEPTUNE. This will be done in collaboration with the developers of NEPTUNE at NRL 
Monterey. Once NEPTUNE has been made a componet, we will move to running the a coupled 
air-ocean-wave-ice system involving NEPTUNE (with NUMA as its dynamical core), HYCOM, 
Wavewatch III, and CICE within the Navy ESPC. 

WORK COMPLETED 

In the course of this project (the first three years plus the two year option), we plan to carry out 
the following work items: 

1. identify current bottlenecks in the NUMA modeling system; 

2. port the explicit time-integration portion of the dynamics onto many-core devices; 

3. port the moisture schemes onto many-core devices; 

4. port the implicit-in-the-vertical dynamics onto many-core devices; 

5. port long-wave radiation and other costly physics onto many-core devices; 

6. transition many-core kernels into NUMA; 

7. adapt the Loo.py code generator for the needs of the project; 

8. develop a source-to-source translation capability built on Loo.py to facilitate the NUMA 
transition; 

9. implement ESMF interfaces for many-core components; 

10. implement NEPTUNE as an ESMF component; 

11. assess performance against current modeling suite; 

12. foster the formation of a community working group on using accelerators for
 
atmosphere-ocean modeling.
 

The management plan for these work items is shown in table 1. Below is a summary on the 
progress we have obtained on these work items. 

Identifying bottlenecks of NUMA In order to facilitate the construction of compute-kernels 
for use on many-core devices, some of the original data structures of NUMA had to be modified. 
Since this is a significant change to the code base, we decided to do this before doing a performance 
analysis to determine the bottlenecks of NUMA. For example, in the CG code the state vector was 
originally stored as q(1 : Nvar ,1 : Npoin) where Nvar are the number of variables per gridpoint (e.g., 
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Activity Months: 0–12 13–24 25–36 37–48 49–60 
Identifying bottlenecks [ 
Explicit dynamics [ • 
Moisture [ • 
Vertically-implicit dynamics [ • • 
More physics processes • • 
Transition many-core kernels into NUMA [ • • • 
Adapt Loo.py [ • • • 
Develop source translation tool • • • • 
Implement ESMF in mini-apps • • • 
Implement ESMF in NEPTUNE [ • 
Assess Performance [ • • • • 
Create Working Group • 
Disseminate work (Publications) [ • • • 

Table 1: Time-line of proposed activities for different months of the project. The 
triangle symbol indicates activities that have started. 

5 for dry dynamics and 8 including water vapor, condensation, and rain) and Npoin are the 
number of gridpoints. This we denote as a Global Grid Point (GGP) storage. On the other hand, 
in the DG code the state vector is typically stored as q(1 : Nvar ,1 : Npts,1 : Nelem) where Npts are 
the number of points inside each element and Nelem are the total number of elements. We denote 
the DG storage as Local Element-Wise (LEW) storage. Rather than carrying two explicitly 
different ways of storing the data, we decided on the GGP storage with the inclusion of special 
pointers that allows us to effectively use either storage. GGP storage will allow us to perform 
computations efficiently on the compute-devices and, perhaps equally importantly, will allow the 
GPU version of NUMA to be based on the same data structures of the NUMA version inside of 
the Naval Research Laboratory’s NEPTUNE system. Another advantage of using only one 
datastructure for the state vector is that we are now able to include both the CG and DG versions 
of NUMA within the same code, including the original NUMA code which uses the GGP storage 
(the NUMA version inside NEPTUNE). To make sure that the fidelity of NUMA was maintained 
we needed to confirm that both the GGP‘ and LEW storage versions of NUMA gave the same 
results. The main challenge in the construction of a parallel CG code is in the construction of the 
direct stiffness summation (DSS) operator which enforces the C0 condition of the solution at all 
element boundaries. A new DSS operator had to be written and this new DSS operator had to be 
tested to ensure fidelity with the previous results. At this stage, we have a CG version of NUMA 
that can use either GGP or LEW storage. The next step is to modify NUMA to also handle DG 
but this will be relatively straightforward since DG uses the LEW storage that has now been 
added to NUMA. Another advantage of adding the LEW storage (for both CG and DG) is that 
NUMA is now capable of handling non-conforming grids which is essential for use in efficient 
adaptive mesh refinement (AMR). The addition of AMR in three-dimensions is work in progress. 

Various other optimization strategies for NUMA have been implemented including efficient 
construction of the initial grids. In addition, the current domain decomposition strategy that uses 
the METIS software is being reconsidered. We began exploring other techniques for constructing 
the graph-partitioning via the use of space-filling curves. If an octree approach to grid generation 
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is used, the graph-partitioning approach is straightforward. However, we seek a general 
graph-partitioning based on space-filling curves for general unstructured grids since it may be 
necessary to construct initial grids off-line (via some other software) and then read into NUMA. 

Explicit Dynamics We have begun the development of the explicit dynamics mini-app. To 
start, we implemented non-linear Euler flow solvers including two-additional tracer fields for 
moisture in two discretization variants: continuous and discontinuous Galerkin spatial 
discretizations both using explicit Runge–Kutta time integration. All of the computationally 
intensive parts of this baseline solver have been implemented with “hand-written” OCCA2 kernels. 
We verified both the continuous Galerkin and discontinuous Galerkin versions of the solver against 
a 3D extruded version of the isentropic vortex benchmark given in Zhou and Wei (2003) (results of 
this verification can be found in figure 1). So far we are satisfied that we have a correct 
implementation of the methods used in NUMA to discretize the compressible Euler equations. 

Once the code was verified, we profiled the program and started to address the bottlenecks of the 
code (current performance profiles of the code can be found in the RESULTS section of this 
report). For these “hand-written” computational kernels, this was a tedious process of trying 
different strategies for memory layout and computation organization. Here we give a couple 
examples of changes we made that improved the performance of the explicit dynamics mini-app. 
We ended up splitting the volume integration evaluation from one kernel into two kernels (one for 
the horizontal and one for the vertical derivatives of the reference element). This change in 
computational organization reduced the register pressure of the kernels, gave the volume 
integration a 6× speed improvement. We also changed the memory layout of the fields processed 
in the computational kernels from one field after the other to an interleaved version so all the 
fields for one grid point are grouped together. This allowed us to use vectorized loads of data in 
the DSS operation and the numerical flux providing a more regular memory access. This change 
drastically reduced the time spent in the DSS operation. 

We next started implementing stabilization required for practical weather application. This 
required the implementation of a variable viscosity diffusion operator. We started by implementing 
a continuous Galerkin discretization of the variable viscosity diffusion operator. To isolate the 
diffusion operator, this was verified by solving a forced heat equation where the solution was 
generated by the method of manufactured solutions (results of this verification are given in 
figure 2). Again once the code was verified, we profiled the mini-app and looked for kernels that 
can be improved. The memory layout change described above also helped to simplify the diffusion 
kernels, which where overly complicated due to the nonuniform memory access of some of the 
derivatives. We are currently in the process of developing the discontinuous Galerkin version of the 
diffusion kernels. 

The remaining items we would like to add to the explicit mini-app model are: (1) the use of 
perturbed variables; (2) different boundary conditions; and (3) a moisture model as detailed below. 
Along with this we are going to use the MPI (Message Passing Interface) API to parallelize the 
mini-app across multiple many-core processors. 

Now that we have the basic structure for the computation in the explicit mini-app developed, we 
can start generating computational kernels with Loo.py and benchmark them against our “hand 
written” kernels. This will be done with the goal being to create performance portable kernels that 
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can be semi-automatically tuned to new architectures. 

Vertically-Implicit Dynamics From March 14 to April 1, Rajesh Gandham (a graduate 
student in Warburton’s research group at Rice University) visited NPS. Part of his visit focused 
on where his expertise can be used in this project. He has developed an algebraic multigrid solver 
(that runs on the CPU and GPU using OCCA) that we are considering using for the linear solves 
when doing implicit time-stepping. Specific he tested his algebraic multigrid (AMG) solver as a 
preconditioner on a reference linear system from NUMA’s Schur complement form of the CG 
discretization with implicit time-stepping. The number of iterations needed were lower than 
currently required in NUMA, now the question becomes is it more efficient? Once the implicit 
time-stepping mini-app is implemented for many-core we can systematically address this question. 

Moisture In our explicit dynamics mini-app we have designed the kernels for 2–3 moisture 
variables to include warm moist processes in the model. We are now determining which moisture 
parameterization to use. We are also considering using the warm air moist processes described in 
Satoh (2003). To verify the implementation we are going to start with the moist bubble testcase 
from Duarte et al. (2013). 

Transition many-core kernels into NUMA A two-pronged approach for GPUfying NUMA 
is currently being undertaken. In one approach, so-called mini-apps are being developed. In 
another approach, standard GPUfying approaches have been implemented within a 
two-dimensional version of NUMA. The main reason for this second approach is to train our 
postdoctoral fellow (who arrived 4 months ago) in the implementation of NUMA on accelerators. 
It also allows us to discover issues that will come up when transitioning the many-core kernels into 
NUMA. In this second approach, subroutines that take up the majority of the computation time 
have been identified via profiling of the code. The results of profiling NUMA2D are shown in 
table 2 where we see that 70% of the computation time is taken up by the evaluation of the 
volume integrals. Although the profiling shown is for the CG version of the code, one advantage of 

Table 2: NUMA2D: Profiling results 

% time subroutine name 
69.17 Volume Integrals 
13.21 Boundary Conditions 
9.49 DSS Operator 

a unified CG/DG approach is that this exact same Volume Integral routine is used in either 
version of the code and so optimizing this routine will impact both the CG and DG results. 

This simple profiling experiment allows us to prioritize the routines that need to be GPUfied in 
order to speed up the code if only to gauge the types of speedups expected (however, to reap the 
full benefits of accelerators requires porting the entire code onto the compute-device and this is 
the role of the first approach mentioned above that involves the construction of mini-apps). As a 
basic test, we have included CUDA and OpenACC versions of the Volume Integral routine. In 
addition, a work in progress to GPUfy NUMA uses OCCA2 kernels written in C++, that can be 
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compiled in to either OpenMP, OpenCL or CUDA at runtime. The major advantage of this 
approach is that NUMA can be run on non-homogeneous computing hardware with optimized 
code. Performance portability is difficult to achieve on future supercomputers that use various 
type of accelerators (GPUs, Xeon-Phi, and SIMD etc). All of these experiences will help us inform 
the development of the Loop.py based source-to-source translation tool that will ease the move of 
NUMA3D to accelerator based computing. 

The results obtained on the GPU and CPU are the same except for minor differences due to 
truncation errors. However no speed up could be obtained on the GPU because time-integration 
for the explicit solver was not moved to the compute-devices. Thus variables have to be copied 
back and forth between the CPU and GPU at each time step. This seems to have impacted 
performance significantly. This is to be expected since to get good performance requires moving all 
of the compute-intensive operations to the compute-device without moving data to and from the 
host. If this is done, then performance is lost which is what this educational exercise confirmed. 
The next step will be to move all of the operations to the compute-devices. However, this will be 
done via the introduction of the mini-apps mentioned previously. 

Adapt Loo.py Efforts surrounding inLoo.py in this project took a three-pronged approach. 
First of all, the tool itself was tested and matured further, incorporating new features and 
improving the usability of existing ones. This general tool maturity will benefit al l aspects of 
Loo.py usage as the project progresses. Second, a syntax was investigated that would, in its final 
state, allow nearly unmodified Fortran kernels to be ingested and transformed by Loo.py. Third, 
Loo.py’s current capabilities were evaluated using hand-written accelerator codes that were 
created as part of other subprojects. In each case, a determination was made whether the 
optimization strategy used by the hand-written code was accessible to Loo.py, and if that was not 
the case, an extension to transformation vocabulary was designed that will be brought to bear on 
this class of compute kernels. 

In addition to the above, Loo.py and its documentation were publicly released and presented at an 
international conference. 

Implement ESMF in NEPTUNE On February 19 and 20 Campbell visited NPS to kickoff 
the NUMA as an ESMF Component part of the project. We discussed the requirements and code 
implications of making NUMA an ESMF component conforming to the NUOPC layer. Campbell 
also visited NRL Monterey during this trip where they are working on the NEPTUNE system 
which is a next-generation unified global-regional prediction system using NUMA as the dynamical 
core. Initially we had proposed to make NUMA a component but with the development of 
NEPTUNE, we are shifting our focus to making NEPTUNE a component. This should be more 
beneficial to the overall ESPC Air-Ocean-Land-Ice Global Coupled Prediction effort. 

Assess Performance We are continuously assessing performance of all of the different 
strategies for running code on many-core processors. The main assessment this year was of the 
NUMA code itself described above and of the explicit dynamics mini-app detailed in the 
RESULTS section below. 
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Create Working Group Although we have not setup a formal working group, Wilcox had 
discussions with the Optimized Infrastructure for ESPC group related to the details about 
many-core programming and implementations (Giraldo listened in). We discussed ways of 
determining resources with various parallel programming APIs. We will continue discussions so 
that the many-core version of NUMA will be able to be called from within ESPC. We stand ready 
to help other groups with any discussions that might help with their transition to many-core 
computing. 

Communication with the community To exchange ideas with the broader community of 
researchers interested in developing high-order accurate simulations, including those for climate, 
weather, and ocean we organized two minisymposium this year. For the first, Warburton and 
Wilcox held a minisymposium at the International Conference on Spectral and High Order 
Methods 2014 (ICOSAHOM http://www.icosahom2014.org/) to bring together senior and junior 
international researchers from the national labs, academia, and industry who are actively engaged 
in the development of high performance algorithms for high-order PDE discretizations on 
many-core architectures. For the second, Giraldo, Navarra, and Tribbia held a minisymposium at 
ICOSAHOM on “Local High-Order Methods for Climate, Weather, and Ocean” which brought 
together the major modeling efforts from around the world that are focused on working on local 
high-order methods such as spectral element and discontinuous Galerkin methods. 

RESULTS 

Explicit Dynamics We have developed a new many-core time-explicit compressible Euler 
equations solver mini-app during the last year. This new capability, uses a continuous or 
discontinuous spatial discretization and an explicit Runge–Kutta temporal discretization 
mimicking what is used in NUMA. This solver currently uses OCCA2 kernels which allows it to 
run on various threading back ends, including OpenMP, Pthreads, OpenCL and CUDA. In figure 1 
we present verification results of the solver for an isentropic vortex benchmark from Zhou and Wei 
(2003). We are in the process of adding variable viscosity for stabilization. We have the continuous 
Galerkin diffusion operator implemented and present verification of the implementation, given in 
figure 2, by solving the heat equation for a manufactured solution. 

In addition to verification tests we have also measured the performance of our explicit dynamics 
mini-app and present the results for running: (1) with a CUDA back end on an Nvidia GeForce 
GTX Titan Black (figure 3); (2) with an OpenCL back end on an Nvidia GeForce GTX Titan 
Black (figure 4); (3) with an OpenCL back end on an AMD 7970 Ghz Edition (figure 5); and (4) 
with the Intel OpenCL back end on a pair of Intel(R) Xeon(R) CPU E5-2650 v2 processors 
(figure 4). We will use this as a baseline of performance for our computational kernels. In these 
plots: “horizontal volume” and “vertical volume” are kernels that compute the volume derivatives 
on each element, which are shared by CG and DG; “surface” is a kernel that computes the 
numerical fluxes and boundary conditions in DG; “project” is a kernel that computes the DSS for 
CG; “boundary” is a kernel that imposes the boundary conditions through a penalty in DG; and 
“update” is a kernel that performs the explicit RK update for both CG and DG. We have similar 
performance numbers for the variable viscosity kernels. Most of these “hand written” kernels are 
towards the outer limit of what is feasible and maintainable. Our goal is to explore a larger set of 
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Figure 1: (Left) Continuous Galerkin; (Right) Discontinuous Galerkin: Error plot 
for a compressible Euler equations isentropic vortex verification test case running 

in double precision on an AMD 7970. 

kernels through composite transforms provided by Loo.py. 

Loo.py Loo.py is a code generation component that will be used for automated, multi-target 
code generation in the later stages of the projects, as results from the ‘hand-written’ effort are 
used to guide and focus the development of the code generator. This will eventually lead to a tool 
that can accept Fortran loops, convert them to Loo.py’s internal data model and carry out a rich 
set of transformations on them, and finally generate code in the form of OpenCL (currently 
implemented) or OCCA2 (to be implemented) kernel code. Building upon and integrating with 
OCCA2’s Fortran runtime features, this capability will allow seamless integration of 
Loo.py-transformed kernels into the mini-apps and NUMA. 

The core contributions in the approach behind Loo.py are the following: (1) A novel, partially 
ordered programming language and corresponding internal representation of array-based programs 
based loosely on the polyhedral model was described. (2) An extensive library of transformations 
was presented to act upon the internal representation that is able to capture many commonly used 
tuning strategies. (3) A novel way of assembling heterogeneous computational software is 
presented. The approach uses a dynamic language for high-level control while interfacing with a 
run-time code generator for high-performance execution. It builds and improves upon the model of 
run-time code generation from a scripting language proposed in (A. Klöckner et al. 2012). (4) The 
data model exposes enough information for a strong run-time interface that provides safe, efficient 
transitions between host and embedded language, optionally enabling type-generic programming. 
(5) The ideas above combine to yield good user program maintainability by enforcing strong 
separation of concerns between computation semantics and performance optimization, easily 
capturing program variants and allowing optimization reuse. 

Klöckner has released Loo.py as a software tool during this reporting cycle, with a web homepage 
at http://andreask.cs.illinois.edu/software/loopy, a source code repository at 
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Figure 2: Continuous Galerkin: Error plot of the explicit dynamics mini-app for
 
a heat equation verification benchmark test case in double precision running on an
 

AMD 7970.
 

https://github.com/inducer/loopy, and a growing set of documentation at 
http://documen.tician.de/loopy. The release of Loo.py coincided with the presentation of the 
paper (A. Klöckner 2014), which was accepted to ARRAY’14, the inaugural workshop on Libraries, 
Languages, and Compilers for Array Programming co-located with the Association of Computing 
Machinery’s Conference on Programming Language Design and Implementation (“PLDI”) 2014 in 
Edinburgh. 

This inaugural release along with its first presentation as a software tool (rather than as the ‘just’ 
the subject of research) catalyzed a number of important developments in loo.py: 

•	 Syntax and usability improvements. A number of small inefficiencies and ‘grown’ inelegances 
came to light as the narrative for the paper was developed. These aspects have been 
addressed, resulting in a cleaner, neater input language for Loo.py. 

•	 To encourage adoption, Loo.py was made as self-contained as possible. This effort included 
the elimination of any dependencies of Loo.py that needed a separate compilation step 
outside of what the Python package manger can handle in an unassisted manner. This 
results in a faster, more streamlined installation process for members of the project team 
desiring to use Loo.py. 

Along with this process of moving towards release-readiness, a number of further improvements 
were made: 

•	 Loo.py as it is today is fairly fast at generating and transforming code, making its use in a 
just-in-time code generation capacity a credible possibility. To enable it to hit even tighter 
performance requirements, a caching framework was put into place that allows allows reuse 
of previously computed transformation and generation results. 

•	 One of the Loo.py’s key benefits over more traditional optimizing compilers is that, since it 
acts under the direction of the user, it is able to perform transformations that are either 
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impossible or tremendously hard to carry out for a traditional optimizing compiler. A 
compiler is required to preserve the semantics of user code, and as such is barred from 
making non-equivalent changes. Freed from this constraint, one impactful transform that 
Loo.pyis able to apply is to change the way data is laid out in memory. While often 
tremendously beneficial for performance, this is not a practical capability until code can also 
be generated to copy data from the original to the new layout in a semi-automatic fashion. 
The ability to perform this function was implemented. 

To prepare for Loo.py’s use in NUMA and gNUMA, a preliminary Fortran frontend was developed 
that makes it possible to use conventional Fortran kernels as input to Loo.py. An example of this 
syntax (along with further syntax for applying transformations) is shown below: 
subroutine fill(out, a, n) 

implicit none 

real*8 a, out(n)
 
integer n
 

do i = 1, n 
out(i) = a
 

end do
 
do i = 1, n
 

out(i) = out(i) * 2 
end do 

end 

!$loopy begin transform
 
!
 
! fill = lp.split_iname(fill, "i", 128,
 
! outer_tag="g.0", inner_tag="l.0")
 
! fill = lp.split_iname(fill, "i_1", 128,
 
! outer_tag="g.0", inner_tag="l.0")
 
!$loopy end transform
 

While, by design, Fortran is able to express more constructs than Loo.py, whose input language is 
not fully general-purpose. In particular, Loo.pyimposes more stringent ordering requirements than 
Fortran, which is based a conventional sequentially-ordered execution. One consequence is that 
using a Fortran kernel such as the example above as input to Loo.pyentails a promise by the user 
that it is safe to do so. The process of making this decision is aided by Loo.pythrough the 
rejection of input code that would not be safe to convert—and when in doubt, err on the side of 
caution. Building on this effort, PI Köeckner and PI Wilcox have identified a number of 
transformations that allow the user to reason about and, optimally, undo optimizations that were 
previously applied to Fortran code by hand. An experimental version of this Fortran frontend is 
available at https://github.com/inducer/floopy. 

Presenting performance results for a code generator like Loo.py is not very meaningful in general, 
as the obtained performance hinges on the sequence of transformations specified by the user to a 
far larger degree than it might for an optimizing compiler. After all, Loo.py is not a compiler, but 
a code generator. Nonetheless, the argument that good performance is achievable using Loo.py’s 
transformations merits being supported. table 3 summarizes performance results for a variety of 
workloads across CPUs and GPUs. These performance numbers were obtained by running Loo.py’s 
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Intel AMD Nvidia 
saxpy 
sgemm 
3D Coulomb pot. 
Simplex dG FEM volume 
Simplex dG FEM surface 

[GBytes/s] 
[GFlops/s] 
[M Pairs/s] 
[GFlops/s] 
[GFlops/s] 

18.6 
12.3 
231 
77.4 
25.9 

231.0 
492.3 
10949 
1251 
527 

232.1 
369.4 
9985 
351 
214 

Table 3: Performance results for a number of simple performance tests on Loo.py.
 
‘Intel’ tests were run on an Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz using
 

the 64-bit Linux Intel OpenCL SDK, build 76921. ‘AMD’ tests were run on an
 
AMD Radeon HD 7990 using AMD’s fglrx driver version 14.1beta1 and ICD
 
version 14.3beta1. ‘Nvidia’ tests were run on an Nvidia GeForce Titan using
 

Nvidia’s 64-bit Linux driver and ICD version 331.49. It should be noted that the
 
discontinuous Galerkin FEM kernels shown in this table operate on tetrahedra and
 

have very different operation counts and performance profiles from the ones
 
shown in the remainder of this report. As a result, direct comparison of
 

performance numbers does not yield meaningful results and should be avoided.
 

test cases against the list of devices specified in the caption of table 3. Since Loo.py’s tests are, for 
now, more focused on correctness than performance, these results should be viewed as a lower 
bound, in the sense that better performance should be available with rather limited tuning effort. 

A careful exploration of how Loo.py’s transformation language enables access to performance 
across a variety of common numerical operations is the subject of a forthcoming article 
(A. Klöckner and Warburton 2014). While Loo.py is a useful system today, a number of extensions 
are likely to broaden its appeal and increase its usefulness, especially in the context of large, 
existing Fortran code bases such as the ones being investigated in this project. A core part of the 
investigation will focus on transformations that help take in, reason about, and 
transform-to-optimize idiomatic Fortran code. 
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Figure 3: (Left) Continuous Galerkin; (Right) Discontinuous Galerkin: 
Preliminary performance results for the hand written computational kernels 

solving compressible Euler equations running in single precision using CUDA (via 
OCCA2) on a Nvidia Titan Black. 
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Figure 4: (Left) Continuous Galerkin; (Right) Discontinuous Galerkin: 
Preliminary performance results for the hand written computational kernels 

solving compressible Euler equations running in single precision using OpenCL 
(via OCCA2) on an Nvidia Titan Black. 
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Figure 5: (Left) Continuous Galerkin; (Right) Discontinuous Galerkin: 
Preliminary performance results for the hand written computational kernels 

solving compressible Euler equations running in single precision using OpenCL 
(via OCCA2) on an AMD 7970 Ghz Edition. 
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Figure 6: (Left) Continuous Galerkin; (Right) Discontinuous Galerkin: 
Preliminary performance results for the hand written computational kernels 

solving compressible Euler equations running in single precision using OpenCL 
(via OCCA2) on dual Intel Xeon E5-2650 v2 CPUs. 
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IMPACT/APPLICATIONS 

Ensuring that the U.S. gains and maintains a strategic advantage in medium-range weather 
forecasting requires pooling knowledge from across the disparate U.S. government agencies 
currently involved in both climate and weather prediction modeling. The new computer 
architectures currently coming into maturity have leveled the playing field because only those that 
embrace this technology and fully commit to harnessing its power will be able to push the frontiers 
of atmosphere-ocean modeling beyond its current state. The work in this project is critical to 
developing and distributing the knowledge of accelerator-based computing that will support the use 
of the new platforms in many of the climate, weather, and ocean laboratories around the country. 

TRANSITIONS 

Improved algorithms for model processes will be transitioned to 6.4 as they are ready, and will 
ultimately be transitioned to FNMOC. 

RELATED PROJECTS 

The Earth System Modeling Framework (ESMF) together with the NUOPC Interoperability Layer 
form the backbone of the Navy ESPC software coupling infrastructure. We will enable the 
many-core mini-apps and NUMA to be used as components in the Navy ESPC by implementing 
them as a NUOPC compliant ESMF components. This will bring our work the ESPC community 
enabling coupling to codes from other projects such as HYCOM and Wavewatch III. 
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