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LONG-TERM GOALS 
 
To develop a robust automatic classifier with a high probability of detection and a low false alarm rate 
that can classify vocalizations from a variety of cetacean species in diverse ocean environments. 
 
OBJECTIVES 
 
In previous work as part of ONR grant N000141210139 a unique automatic classifier developed by the 
PI that uses perceptual signal features –features similar to those employed by the human auditory 
system– was employed to successfully classify anthropogenic transients, and vocalizations from five 
cetacean species.  Although this is a significant achievement, successful implementation of this (or 
any) classifier requires that it be temporally and spatially robust.  The primary goal will be to address 
the question: “Will it work on vocalization data from these species collected under different 
environmental conditions?”  To examine this, discriminant analysis will be used to rank the aural 
features in terms of their ability to separate the vocalizations between species.  Then, the more highly 
ranked features will be tested for robustness.  This will be done by performing a propagation 
experiment using cetacean vocalizations and synthetically generated calls as source signals, and testing 
the received signals with the classifier.  The measurements will be complemented by comparing 
experimental results to propagation model results with the goal of generalizing the results to other 
ocean environments. 
 
APPROACH 
 
The research is part of a PhD program undertaken by Ms. Carolyn Binder under the supervision of Dr. 
Paul C. Hines.  The postgraduate program is being conducted collaboratively in the Oceanography and 
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Electrical Engineering departments at Dalhousie University where Dr. Hines holds adjunct professor 
and research posts, and at Defence R&D Canada–Atlantic where Ms. Binder is a researcher. 
 
Passive acoustic monitoring (PAM) is widely in use to study marine mammals; since marine mammals 
can be found in all ocean basins, their habitats cover diverse underwater environments. It is well 
known that acoustic propagation can vary substantially between environments which can result in 
distortion of acoustic signals [1-3].  This in turn, can lead to environment-dependent time-frequency 
characteristics of a received vocalization.  The resulting distortion of vocalizations may impact the 
accuracy of PAM systems.  Thus, to develop a classification system capable of operating in many 
environments one must understand the role of propagation on the classifier. 
 
A prototype aural classifier developed at Defence Research and Development Canada has successfully 
been used for inter-species discrimination of cetaceans [4]. The aural classifier is an effective PAM 
tool because it employs perceptual signal features, which model features used by the human auditory 
system [5].  The proposed research aims to examine the robustness of this classifier, and the perceptual 
features it uses, to environmental conditions.  To accomplish this, propagation experiments were 
conducted by transmitting a set of real and synthetic vocalizations from bowhead and humpback 
whales, and measuring the received signals at a variety of ranges [6].  The transmitted and received 
signals will be tested using the aural classifier to identify any performance degradation due to 
propagation.  The measurements will be complemented by propagation-model results using 
environmental inputs measured during the experiments.  The model results will provide physical 
insight into what propagation effects have the greatest impact on the classifier’s robustness, and aid in 
generalizing the experimental results to other ocean environments.  It also enables one to put bounds 
on realistic within-environment variability.  It is worthy of mention that there is no study published in 
the literature that systematically analyzes the impacts of propagation on an automated classifier, using 
both underwater propagation experiments and complementary modeling. 
 
If propagation does impact some features, then the next step is to rank the features in order of their 
sensitivity to propagation-related effects. Features which are especially sensitive to the acoustic 
environment might simply be removed from the aural classifier.  Alternatively, it may be found that 
many of the perceptual features are environment-sensitive and therefore it is unreasonable to exclude 
all of them.  In this case, a strategy may instead be developed to generate training sets for the classifier 
that take propagation-related signal distortion into account; this could be done either by acoustically 
distorting the training data by propagating them through a modeled environment or by including 
vocalizations in the training set that came from a variety of propagation ranges as done in [7, 8]. 
 
WORK COMPLETED 
 
The focus of the effort during FY 2015 has been two-fold: 
 

1. Continuing detailed analysis of the data collected during the propagation experiments to test the 
robustness of the aural classification feature set.  Details of the experiment are reported in [6] 
and are not repeated here due to space limitations, but a schematic of the experimental 
geometry is shown in  

2. Figure 1. 
3. Exploring the relative impacts of signal-to-noise ratio (SNR) and multipath propagation effects 

on the performance of the classifier using a pulse propagation model. 
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Experimental Data Analysis: The acoustic data that were collected during the experiments were 
processed. The processing stream is as follows: The signals are identified in the recordings made by 
each hydrophone using a frequency band-limited energy detector [9].  These detections are then 
compared to the known time that signals were transmitted to remove false detections. After each signal 
has been detected, a four second segment of the signal is extracted with the detection located 
approximately in the centre of the segment. Each extracted detection is saved to a WAV file, and high-
pass filtered to remove the DC-offset applied by the recording equipment and any low-frequency 
noise. At this point, the received signals are able to be input to the aural classification algorithm. 
 

 
 

Figure 1: : Representation of the experimental setup. The ship first deployed two hydrophone 
moorings, moved to the first location and transmitted the set of signals, then moved further away 
from the recorders and retransmitted the signals. R1 and R2 represent the horizontal range the 

signals propagated from the source to the midpoint between the moorings. 
 
The 58 perceptual features are calculated for each signal transmitted during the experiments and the 
signals received on each of the deployed hydrophones. An initial assessment of the classifier 
performance is accomplished by training the classifier on data recorded by a monitor hydrophone that 
was deployed from QUEST during the experiments, and testing on data transmitted through the water.  
Classification tasks are divided so that the real and synthetic whale calls will be considered separately. 
 
The classifier is trained using all non-redudant features (see [5] for explaination of how highly-
correlated, or redundant, features are identified) as determined from the signals in the training set. 
Examining and comparing the decision regions for signals transmitted over each of the ranges will 
allow qualitative analysis of the classifier’s robustness. Quantitative analysis will consist of comparing 
the accuracies and area under the ROC curve AUCs, as well as the class means and variances. If 
propagation affects the perceptual features used for classification, then one would expect that the class 
means of the propagated signals in the training and testing sets would be significantly different, and/or 
there would be a large change in the variance of the classes. This will likely result in a decrease in the 
AUC and/or the classification accuracy. This type of analysis is repeated allowing the classifier-
algorithm freedom to select the best perceptual features to train the classifier. 
 
Performance Dependence on SNR vs. Multipath Propagation: Preliminary results from the 
experimental analysis (Figure 2) indicate that there is a trend of decreasing classifier performance with 
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increasing transmission range.  A similar pattern was noted in the SNR-dependence investigation of 
Murphy and Hines [7], suggesting that SNR may, at least in part, be driving the decrease in classifier 
performance. Mouy et al. [10] also noted that false negative rates increased as SNR decreased.  Thus, it 
is expected that there is a range-dependent component of the aural classifier performance that is due to 
decreasing SNR as the range increases.  The question thus becomes, what are the relative contributions 
of lowering SNR and increasing multipath signal distortion to reduced classifier performance? 
 
Pulse propagation modelling is used to address this question.  DRDC’s WATTCH (WAveform 
Transmission Through a CHannel) [11, 12] model is used to simulate the expected time series received 
at a set of hydrophones for each sourch signal based on the user-defined environment inputs.  The 
propagatation modelling component is done using the active version of Bellhop.  The WATTCH 
program was chosen because it allows for range-dependent environments, is efficient, and accuracte 
for the frequencies and spatial scales of the experiment.  To examine the relative importance of SNR 
and propagation on classifier performance, a simulation study was developed that examined three 
separate cases: 
 

Case 1:  Add noise to the original signals (i.e., signals which were not transmitted during 
experiment or simulation).  Snippets of noise recorded during the sea trial are added to the 
signals to match the SNR of signals that were recorded during the experiments for ranges 
equal to R = {0.07, 1, 5, 10, 20} km. 

Case 2: Use the WATTCH model to simulate signals propagated over range R. 

Case 3:  Add noise to simulated signals from case 2, to match the measured SNR at each value of R. 
This should provide the most realistic results, and match experimental results. 

 
Classification performance for each of these cases is compared as a function of propagtion range. 
 
RESULTS 
 
Experimental classifier performance for the synthetic whale calls is summarized in Figure 2.  The 
classifier was trained with data from a monitor hydrophone deployed from QUEST, separated from the 
acoustic source by approximately 70 m.  The data transmitted over longer ranges is then run throught 
the trained classifier.  Each line on the plot shows the performance determined from data recorded on a 
different hydrophone.  Results are also separated by day.  There is a clear trend for the classifier 
performance to decrease with increasing range.  This is at least partially due to classifier performance 
decreasing with decreasing SNR, a trend that is obvious in the bottom panel of Figure 2.  The question 
remains – what is the relative importance of SNR and multipath propagation effects to this range-
dependent decrease in performance? 
 
A modelling study was performed to examine this question by comparing classification performance as 
a function of range for the three cases discussed above.  Results are shown in  
Figure 3.  As expected, the performance decreased as SNR decreased with increasing range, similar to 
what was observed in the experimental data.  A suprising result here is that the performance remained 
perfect for the second case.  Even though multipath propagation increasingly distorted the waveform 
with range, there was no change in the performance; however, when noise was added to these signals 
the performance decreased below that of the noise only case.  This suggests that with sufficient SNR, 
multipath propagation has minimal impact on classifier performance; lowering the SNR however, not 
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only decreases performance, it amplifies the multipath-dependent degradation.  Further work needs to 
be done to determine if there are (realistic) environments in which propagation effects drive 
performance and whether surface roughness needs to be included to to obtain sufficient fidelity in the 
model. 
 
 

 

 
 

Figure 2: Experimental classifier performance for bowhead and humpback synthetic calls as a 
function of transmission range (top) and SNR (bottom).  The classifier was trained with data from a 

hydrophone deployed from QUEST and then validated on data from each of the recorders. The 
black circle in the plots represents the training results. 
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Figure 3: Relative impacts on classifier performance of SNR and signal distortion due to multipath 
propagation as a function of transmission range.  The classifier was trained with data from the 70 m 

range and applied to data transmitted over the longer ranges. 
 
IMPACT/APPLICATIONS 
 
Detection and classification of cetaceans has become critically important to the US Navy due to an 
ever increasing requirement for environmental stewardship.  Passive acoustics continues to be the best 
method to carry out this task but current techniques provide only a partial solution; most detectors are 
either too general, leading to unacceptably high false alarm rates, or are too specialized (i.e., species- 
or location-specific) leading to many missed detections. Furthermore, future military platforms will 
have to support smaller complements and deal with ever-increasing data throughput, so that 
automation of on-board systems is essential.  In addition, the technique is well suited to autonomous 
systems since a much smaller bandwidth is needed to transmit a classification result than to transmit 
raw acoustic data. The success of the machine classifier in discriminating cetacean vocalizations 
suggests that it could be applied to other passive acoustic classification problems which currently 
employ human audition.  This would be particularly useful if expert listeners aren’t available –such as 
diagnosing heart murmurs in remote communities that lack a cardiologist, or as part of the triage 
process in a hospital emergency department.  Alternatively, the machine classifier is ideally suited 
when the sheer volume of data makes human audition untenable – such as classifying ocean acoustic 
data for species population monitoring.  Finally, developing a robust classifier for passive marine 
mammal vocalizations is also a first step to testing the algorithm on passive transients generated by 
submarines to examine its potential for passive detection and classification of submarines. 
 
RELATED PROJECTS 
 
This research will benefit from DRDC Atlantic’s Force ASW Program in which DRDC’s aural 
classification algorithms (including the marine mammal classification algorithm) is being integrated 
into DRDC’s System Test Bed (STB).  The STB is used to evaluate sonar algorithms in a military 
context.  Two of the insights to be gained are: 1.  Does the aural classifier reduce false alarms from 
marine mammals, thereby reducing operator workload and enabling greater concentration on potential 
threats? 2.  Is the aural classifier easily integrated into a navy platform? 
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