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LONG-TERM GOALS

Our long-term goal is to develop a methodology for modeling the relationship between model 
parameters (e.g., in NWP models) and features of the forecasts (e.g., the number of precipitation 
objects/events in the forecast domain).  The relationship in question is modeled statistically, i.e. from 
data on both the model parameters and the forecast features. Given that data structure, we are able to 
develop a “forward model” which maps the model parameters to the forecast features, as well as an 
“inverse model” for mapping the forecast features to the model parameters. Both of these models can 
be used in “tuning” the model for the purpose of improving the forecasts when the verification metrics 
take into account spatial features of the forecasts (e.g., size and location of precipitation events).

OBJECTIVES

In the current phase of the project, the main objective has been to focus on COAMPS, and 11 of its 
parameters.  In past work, we related these parameters to non-spatial features of the forecasts, e.g., 
overall precipitation amount across the entire forecast domain).  The current objective is to focus on 
spatial features. Specifically, we have focused on the location of each precipitation event, amount of 
precipitation in each event, the size of each event, and the shape of each event.

APPROACH

We have adopted a multivariate regression framework; “Multivariate” refers to multiple responses 
(i.e., forecast quantities), in addition to multiple covariates (i.e., the 11 parameters).  In this framework, 
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the regression coefficients corresponding to the 11 model parameters represent the sensitivity of the 
response with respect to that parameter. The response itself is taken to be a 3-dimensional vector 
corresponding to the minimum, median, and maximum of a forecast feature. This allows one to assess 
the effect of the parameters on the distribution of the forecast feature. To quantify the aforementioned 
forecast feature, 6 summary measures are computed for each object/event in the domain: Latitude and 
longitude (measures of location), amount of precipitation (measure of intensity), area (measure of 
size), and eccentricity and orientation of an elliptical fit to the event (measures of shape). The 
objects/events are identified using cluster analysis.

WORK COMPLETED

The completed work involves a large number of statistical tests each assessing the effect of a parameter 
on some summary measure of a forecast feature. Specifically, we have analyzed 36 days, 11 
parameters, 6 forecast features, and 3 summary measures. In order to reduce the number of Type I 
errors resulting from multiple hypothesis testing, we have divided the task into two stages.  (Type I 
error refers to falsely rejecting a true hypothesis, or finding someone guilty when in fact they are 
innocent). In stage I, we employ the above-mentioned multivariate regression model to perform 
omnibus tests (i.e., tests involving complex hypotheses). For example, we test whether any of the 11 
parameters have an affect on any of the forecast features.  Then, in the second stage, we focus on the 
effect of the individual parameters on the individual forecast summary measures, for each day. 

RESULTS

We have shown that it is possible to control specific spatial features of precipitation events by 
manipulating model parameters in COAMPS.  The following paragraphs present more specific 
conclusions.

The results of the first stage can be summarized into Figure 1, showing the histogram of all of the (36 x 
6) p-values from the omnibus tests applied to 36 days and 6 forecast features. It can be seen that all of 
the p-values are extremely small. All, but two are smaller than 0.05. However, given that this is still a 
relatively large number of tests, one can apply a Bonferonni correction, which effectively reduces the 
significance level of 0.05 to 0.0002. Even at this severe significance level, most comparisons are 
significant. In other words, there is abundant evidence that some of the 11 parameters have an affect on 
some of the three summary measures (minimum, median, maximum across clusters).

Figure 1. The histogram of 36 x 6 p-values 
resulting from testing whether any of the 
11 parameters have an effect on any of the 
3 summary measures.
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In order to better identify the individual parameters, and forecast measures, we examine the boxplot of 
the regression coefficients for each parameter, and for each forecast feature. Figure 2 shows the results.

Figure 2. The sensitivity of the forecast features (rows), and each forecast summary measure 
(columns), with respect to the 11 parameters (x-axis in each panel).
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Many of the 11 parameters have no effect on the forecast features, but the most obvious exception is 
parameter 5 (i.e., a linear factor that modifies the surface fluxes) which, by virtue of having mostly 
positive values for its regression coefficient, is positively associated with median precipitation. 
Parameter 9 (i.e., an autoconversion factor for the microphysics) has a similar effect but to a lesser 
degree. Parameter 1, i.e., temperature increment at the Lifted Condensation Level (LCL) for the 
Kain-Fritsch (KF) trigger, and parameter 7, i.e., another method to perturb the temperature at the LCL 
in KF, not only have a weaker  effect (because their center is closer to zero), they are also not as 
statistically significant (because the number zero appears well within the span of the boxplots). 
Moreover, these two parameters are negatively associated with precipitation intensity in the typical 
(median) cluster.

It appears that the latitude of the clusters is not affected by any of the 11 model parameters. The second 
row of figures suggests that parameter 5 may have a weak, positive effect on the longitude of the 
clusters. In fact, only the minimum and median longitude (i.e., most easterly and midfield) clusters 
appear to be affected. However, this effect is weak both statistically and in magnitude, and so, will not 
be further examined.

Based on the ``area row" (panels j, k, l), there is no evidence that any of the 11 parameters have an 
effect on the smallest clusters (panel j), while there is some weak evidence that parameters 1 and 7 
have a weak effect on the typical area (panel k) and the largest cluster (panel l). There is also some 
indication from panel (l) that parameter 9 has a negative effect on the largest cluster; in other words, 
increasing this parameter is likely to shrink the largest cluster in the domain, without significantly 
affecting the size of the other clusters.

Eccentricity is not shown here, because like the last row (i.e. rotation), none of the parameters appear 
to have an effect on any of the forecast features. This conclusion, however, is tentative, and therefore 
will be further examined.

The clustering algorithm used in all of the above is developed in another related project (See related 
projects).

All of this work was done in collaboration with graduate students Ning Li and Natalia Hryniw. 
Although Natalia is still enrolled in the Atmospheric Sciences Ph.D. Program, Ning has left this project 
to join a Ph.D program in a different field. For the Summer quarter, another Ph.D student in the 
Statistics Department (Corinne Jones) took over Ning's responsibilities; Corinne was able to make 
tremendous progress, alas she too, has decided to move on to other topics.  All of these students have 
been funded at 50% from this grant and 50% from another grant  (again, see Related Projects). 

IMPACT/APPLICATIONS

All of these results can be used to better set model parameters for the purpose of  affecting forecasts. 
This may be for the purpose of improving forecasts (as compared with observations), or for the 
purpose of correcting one forecast feature (e.g. precipitation area) without negatively impacting other 
features. 
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RELATED PROJECTS

Two of the PIs (Marzban and Sandgathe) have received NSF funding on a related project.  Sensitivity 
Analysis (SA) is common to both projects. However, the NSF project aims to develop a verification 
method, based on cluster analysis (CA), for automatic identification of  “objects,” their locations, and 
their orientation, in both forecast and analysis fields.  Progress in the NSF project will aid this project 
in better assessing how the model parameters affect the number of clusters in the forecast field. 

The two projects have been mutually beneficial. In fact, the clustering algorithm used to perform the 
analysis here was developed jointly as part of both projects.

PUBLICATIONS

Marzban, C., C. Jones, N. Li, S. Sandgathe 2015: Sensitivity of Forecast Spatial Features to Model 
Parameters: COAMPS . To be submitted to Monthly Weather Review.
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