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Section I:  Project Summary 
 
1.  OVERVIEW OF PROJECT 
 
Our long-term goal is to develop and apply new theory, algorithms and computational systems for the 
sustained coordinated operation of multiple collaborative autonomous vehicles over long time 
durations in realistic multiscale nonlinear ocean settings, such that the integrated naval system 
optimally collects observations, rigorously propagates information backward and forward in time, and 
accurately completes persistent learning, environmental adaptation, machine metacognition and 
decision making under uncertainty. 
 
Specific Objectives:  

• Derive, implement and evaluate rigorous and efficient Bayesian smoothing theory and schemes that 
respect nonlinear dynamics and capture non-Gaussian statistics, for robust persistent inference and 
learning, integrating information backward and forward in time over long durations in large-
dimensional multiscale fluid and ocean dynamics.  

• Derive and develop adaptive sampling theories and methods that predict the types and locations of 
the observations to be collected that maximize information about the ocean system studied (e.g. 
about its model state variables, parameters and/or formulations) 

• Merge and refine our reduced-order DO stochastic equations with our path planning methods, to 
obtain new stochastic schemes for time-, coordination-, energy-, dynamics- and swarm- optimal 
path planning that efficiently account for ocean forecast uncertainties.  

• Develop efficient onboard routing and high-level adaptation schemes that utilize observations 
collected by vehicles to autonomously adapt optimal plans (e.g. for paths, sampling strategies, 
collaboration or decision making process). 
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• Apply these schemes to simulated fluid and ocean dynamics, from idealized to realistic settings, and 
integrate these schemes for real sea exercises of opportunity involving distributed computations 
across components of the autonomous naval sensing systems. 
 

2. ACTIVITIES THIS PERIOD 
 

Optimal Path Planning in Dynamic Environments: Our previous path planning results include the 
development of an exact PDE-based level-set methodology for time-, coordination-, and energy- 
optimal path planning that rigorously integrate ocean forecasts with optimal control of autonomous 
vehicles. In this period, we quantitatively assessed the performance of our algorithms and improved 
runtime by code optimization. Having completed optimal path planning studies in several idealized and 
complex realistic multiscale ocean flows, we directed our efforts to publish results (Lolla and 
Lermusiaux 2015, Lolla et. al. 2015, Subramani et. al. 2015a, Subramani and Lermusiaux 2015, 
Subramani et. al. 2015b). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: The start point is marked as a circle and the end point is marked as a star, overlaid on 
bathymetry (colored). The smaller white box is the zoomed part of the domain shown in Fig. 2b 

 
Energy-optimal planning within realistic data-assimilative re-analyses of multiscale coastal ocean 
flows: A stochastic dynamically orthogonal level-set optimization methodology was previously 
developed for energy-optimal path planning in dynamic flows. To set up the energy optimization, the 
relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically 
Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are 
derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding 
distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint 
distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal 
paths for that arrival time. To objectively analyze and quantify the performance of our methodology, 
we employed it to perform energy-optimal path planning for vehicles operating in multiscale coastal 
ocean flows. These flows are realistic data-assimilative re-analyses obtained from multi-resolution 2-
way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight 
and Shelf break Front region. We considered a glider released from off the New Jersey coast and 
travelling to a point in the AWACS region, as shown in Fig. 1. The energy-time joint distribution for 
the current mission is shown in Fig. 2a, and two paths corresponding to samples marked 1 and 2 are 
shown in a zoomed part of the domain in Fig. 2b.  The effect of tidal currents, strong wind events, 
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coastal jets, and shelfbreak fronts on the energy-optimal paths was quantified. Further figures are 
available in Subramani et al. (2015) and upon request.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 a) Distribution of energy and time for various configurations of vehicle speeds sampled 
using the switch-sampling algorithm for a mission starting on Aug 28, 2006 00 UTC, in the middle-

Atlantic Bight Shelfbreak-front region. The energy-time curve for the constant speed vehicles is 
colored according to the vehicle speeds. b) The paths traveled by a constant speed vehicle and an 

energy optimal vehicle, both reaching on 6 Sept. The 24h averaged velocity re-analyses on 6 Sept is 
colored in the background. The instantaneous vehicle speed (colored) is overlaid on the path. By 
utilizing the ocean environment intelligently, the energy optimal vehicle expends 26% less energy 

than the constant speed vehicle. 
 
Time-optimal path planning under uncertainty: Ocean velocity fields in the coastal regions of 
interest are complex and intermittent, with unstationary heterogeneous statistics. Moreover, due to the 
limited measurements, there are multiple sources of uncertainties, including the initial conditions, 
boundary conditions, forcing, parameters and even the model parameterizations and the equations 
themselves. Therefore, flow forecast uncertainties should be rigorously incorporated in our path 
planning. We extended the stochastic DO level-set equations to account for uncertainties in the flow 
field. First, new stochastic DO level set equations with uncertain environmental flows were derived. 
Next, we implemented these equations and tested them for planning paths in a wind-driven barotropic 
quasi-geostrophic stochastic double-gyre ocean circulation (these stochastic flow fields are simulated 
using our DO Navier Stokes equations). The accuracy of the DO level-set equations for solving the 
governing stochastic level-set reachability fronts was first verified in part by comparing with Monte 
Carlo solutions. Fig. 3 shows the Frechet distance, which measures the closeness of two closed curves, 
between the maximum reachable set contours computed by DO and MC. We see that it is less than the 
spatial resolution used, indicating our DO solutions are accurate. We solved the DO level-set equations 
and obtained the stochastic distribution of time optimal reachable sets for a constant-speed vehicle 
operating in the double-gyre. Fig. 4 shows the stochastic reachable sets at four different times. Each 
level-set realization is colored by its respective optimal arrival time. We note that the reachable sets 
‘flip-over’ due to the flow structures, i.e., for certain endpoints, the optimal path that a vehicle takes for 
a particular realization of the flow field differs from the path taken for another flow field realization. 
This means that in long endurance missions where path variability needs to be minimized, certain end 
points should be avoided. Further figures are available in Wei (2015).  
  



4 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3 (Top): Comparison of the reachable set computed by DO (black) and MC (red) at 4 non-
dimensional times. The frechet distance between the maximum reachable set (i.e. the zero level-set 

contour) as a ratio of grid spacing is also indicated. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 (Right): Distribution of reachable sets shown at 4 non-dimensional time for stochastic 
time-optimal path planning in stochastic double-gyre flow. Each realization of the reachable set is 

colored with its respective optimal arrival times 
 
 
GMM-DO Smoother: We derived and developed the GMM–DO smoother, a novel scheme for 
retrospective Bayesian inference of high–dimensional stochastic fields governed by general nonlinear 
dynamics (Lolla, 2015, Lolla and Lermusiaux, MWR-2015-sub). The smoother carries out Bayesian 
inference both forward and backward in time, while retaining the non–Gaussian structure of all the 
state variables. It uses the stochastic DO PDEs and their time–evolving stochastic subspace to predict 
the prior probabilities. The forward and backward Bayesian inference is then analytically carried out in 
the dominant DO subspace, after fitting semi-parametric Gaussian Mixture Models (GMMs) to the DO 
realizations. We illustrated and assessed the performance of the GMM–DO smoother using several 
realistic fluid flows governed by nonlinear and noisy dynamics. We demonstrated a superior 
performance of the GMM–DO smoother when compared to various Gaussian smoothers, such as the 
ESSE smoother and Ensemble Kalman Smoother. We also validated the GMM–DO smoother using 
the example of a passive tracer transported by an analytical flow–field, wherein the exact smoothed 
variables can be determined numerically by reversing the flow starting from the GMM-DO solution at 
the final simulation time. Fig. 5 compares the mean tracer field of the GMM–DO smoother with the 
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exact smoothed mean at assimilation times. We observe that the mean field of the smoother closely 
matches the mean field of the exact smoothed solution at all times. The normalized RMS difference 
between these quantities is plotted in Fig. 6b. At the final time, the error is zero. As we approach time t 
= 0, the GMM-DO smoother mean begins to only slightly depart from the exact smoothed mean, 
owing to the approximations in the joint subspace GMM fits. Nonetheless, the GMM–DO smoother 
mean remains within 1% of the exact smoothed mean throughout the time window of interest. Fig. 6a 
compares the result of the GMM-DO filter and the GMM-DO smoother, using RMS error as the 
performance criterion. The filter error, initially as high as 17%, reduces to a final value of 6% after all 
observations are assimilated. The smoother maintains this error level throughout the window of 
interest, thereby achieving a significant improvement over the filtered solution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Passive Tracer Advection in Swirl Flow: Time–evolution of the mean tracer field 

estimated by the GMM–DO smoother plotted alongside the corresponding exact smoothed mean 
field. The exact smoothed mean is computed by reversing the flow from the final filtered solution. 

 
 
  



6 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 6: Passive Tracer Advection in Swirl Flow: (a) Normalized RMS difference between the 
mean estimates of the GMM–DO smoother (solid)/GMM–DO filter (dashed) and the true tracer 

field. We see that the smoother mean is much closer to the truth than the filter mean at the 
corresponding time. (b) Normalized RMS error between the smoother mean and the exact smoothed 

solution, computed by reversing the flow from the final–time filter solution. 
 
Adaptive Sampling and Mutual Information 
We derived two theories for adaptive sampling that exploit the nonlinear dynamics of the system and 
capture the non-Gaussian structures of the stochastic fields. The optimal observation locations are 
determined by maximizing the mutual information between the candidate observations and the future 
verification variables of interest. Building on the foundations of the GMM-DO smoother, we first 
developed an efficient technique to quantify the spatially and temporally varying mutual information 
field in general nonlinear dynamical systems. The panels of Fig. 7 depict the time-evolution of the 
mutual information field with respect to the starred point of interest at verification time tv=1, for a 
passive tracer advected by a reversible swirl flow. It is evident that the region with the largest mutual 
information is initially localized towards the bottom right of the domain, while the rest of the domain 
provides comparatively much lesser information about the tracer concentration at the point of interest. 
As time progresses, the peak of the mutual information approaches the point of interest. Moreover, the 
entire mutual information field behaves as a tracer field getting advected by the swirl flow. Similar 
studies were completed for other fluid dynamical systems such as stochastic flows exiting a 
strait/estuary and stochastic wind-driven double gyre flows. The effects of varying the point of interest 
and the verification time were also investigated. The results showed that the mutual information field is 
largely driven by the physics of flow transport (due to advection) and mixing (due to diffusion). 
 

 
Figure 7: Mutual information field of a passive tracer advected by a reversible swirl flow: Snapshots 
of the time-varying mutual information field with respect to a given point of interest (depicted as a 
star). The informative region, initially circular in shape, gets deformed as time progresses and also 

approaches closer to the point of interest. 
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(a) Short-term lookahead method for integrated adaptive sampling and path planning:  We 
developed a short–term lookahead approach for adaptive sampling that sequentially identifies the 
optimal observation sites based on short-term predictions of reachable sets using our level-set 
methodology for forward reachability. The optimal observation sites at the next assimilation time are 
identified as the reachable locations at that time, which maximize the mutual information with respect 
to the future verification variables. Mobile sensors are navigated to their short-term optimal 
observation sites, and their measurements are assimilated in order to obtain the posterior densities of 
the state variable.  
 

 
Figure 8: Short–term Lookahead Method (Single Sensor): Time–evolution of the sensors’ sampling 

locations. Various panels depict the short–term reachability fronts of the sensor at the times 
indicated. The reachability fronts at previous assimilation times are shown as dashed curves. The 

optimal short–term observation sites are shown as black markers. 
 
 
Hence, this method for adaptive sampling integrates the computation of mutual information fields with 
the predictions of the sensors’ forward reachable sets. As the search for the most informative sites is 
restricted to the interior of the sensors’ reachable sets, all the physically impossible trajectories are 
immediately ruled out. However, this approach is myopic and can yield locally optimal solutions, as 
the search for optimal observation sites is limited to the reachable sets at the next observation time, but 
not those beyond. Addressing this issue, we developed a globally optimal method for integrated 
adaptive sampling and path planning, described next.  
 
(b) Globally optimal method for integrated adaptive sampling and path planning: Building on the 
short–term lookahead approach, we developed a novel, globally optimal method for integrated 
adaptive sampling and path planning. To determine the sampling strategy, this method considers the 
impact of informative zones beyond the next observation time. It first predicts the set of reachable 
locations at all subsequent observation times, thereby implicitly populating an exhaustive set of 
candidate sampling trajectories. The globally optimal sampling sequence is rigorously and efficiently 
computed using a Dynamic Programming (DP) formulation of the governing optimization. The results 
are exemplified and the performance of the method was quantitatively assessed using a variety of 
realistic test cases. 
 
  



8 
 

 
Figure 9:  Globally optimal method for adaptive sampling: Various panels depict the reachable 

observation sites (both present and past) computed using our level set method for forward 
reachability. These discrete locations form the search space for the globally optimal sequence of 

future observation locations. 
 
 
The panels of Fig. 9 depict the set of reachable observation sites at different observation times, 
computed using our level-set method for reachability. The set of reachable sites naturally grows with 
time-it starts off as a singleton at the time of deployment, and eventually expands to cover a large 
portion of the domain at the final observation time. The optimal sequence of future sampling locations 
is determined from within this set of reachable observation sites by carrying out a DP recursion 
backward in time.  Fig. 10 shows the result of this optimization at the deployment time. The optimal 
sequence of future observation sites is marked in black. As the mobile sensor performs measurements, 
the underlying state fields and the sampling strategies are recomputed by accounting for the new 
information. The above two methods for integrated adaptive sampling and path planning were also 
extended to the case of swarms of mobile sensors operating simultaneously.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10:  The globally optimal sequence of future sampling locations (marked in black), selected 

from within the reachable observation sites (not shaded). 
 
Pursuit-Evasion Games in Dynamic Flow Fields. 
In collaboration with Prof. P. Tsiotras and his student W. Sun (Sun et al., ACC-2015-sub), we utilized 
our reachability set analysis equations and software to deal with the pursuit-evasion differential game 
between two players in the presence of dynamic environmental disturbances (e.g., winds, sea currents). 
We give conditions for the game to be terminated in terms of reachable set inclusions. Level set 
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equations are defined and solved to generate the reachable sets of the pursuer and the evader. The 
corresponding time-optimal trajectories and optimal strategies can be retrieved immediately 
afterwards. We validated the method by applying it to pursuit-evasion games in both simple and more 
realistic flow fields. 
 
3. SIGNIFICANCE OF RESULTS 

 
Our energy optimal path planning results showcase the energy saving opportunities for longer-duration 
missions that intelligently utilize the ocean environment, rigorously integrating ocean forecasting with 
optimal control of autonomous vehicles. Such an integration has been completed for the first time and 
may lead to a paradigm shift in the science of autonomy. The extension of the new stochastic DO 
level-set equations to account for uncertain flow environments allows us to perform decision making 
under uncertainty efficiently and rigorously.  
 
Our results on optimal Bayesian inference in high dimensional nonlinear stochastic dynamical systems, 
both forward and backward in time have important applications in geophysical systems, ocean 
modeling and prediction, meteorology and numerical weather prediction. In particular, smoothing has 
a critical role to play in reanalysis, target tracking, identification of sources of environmental 
pollutants, adjustment of ocean forcings in numerical simulations, estimation of numerical boundary 
conditions etc. By addressing how to accurately propagate information from observations backward in 
time, we provide a significant advance over traditional inference schemes based on the classic Kalman 
smoother. 
 
Our results on optimal integrated adaptive sampling provide real-time computational intelligence for 
collaborative swarms of autonomous sensing vehicles. The integrated system can guide groups of 
vehicles along predicted optimal trajectories and continuously improve field estimates as they collect 
the most informative observations. The optimal sampling locations and optimal trajectories are 
continuously forecast, all in an autonomous and coordinated fashion. 
 
4. PLANS AND UPCOMING EVENTS FOR NEXT FISCAL YEAR 
 
We first plan to further analyze the GMM-DO smoother in high dimensional systems, including  
comparison with other smoothers, both Gaussian and non-Gaussian. We will start implementing and 
improving such schemes in realistic codes for physical, biological and acoustic ocean dynamics. We 
expect to further develop, optimize and implement our adaptive sampling schemes based on dynamic 
mutual information fields. We intend to further develop theory and schemes on “adaptive sampling 
swarms” and “artificial intelligence for collaborative swarms”. We plan to study the effect of uncertain 
stochastic ocean predictions on the optimal path planning, both for single paths and for coordinated 
paths maintaining vehicle formations. We also plan to continue working on onboard routing using data 
assimilation updates and to initiate research towards other optimality criteria such as dynamics-optimal 
and swarm-optimal. We plan to further integrate our Bayesian smoothing, adaptive sampling and path 
planning to enable long-duration environmentally-adaptive autonomous rigorous naval systems. We 
plan to continue transferring the methods and algorithms to NRL. We expect to continue to apply our 
work to realistic ocean fields and/or participate to sea exercises, aiming to couple ocean-acoustic 
predictions, uncertainty prediction, autonomous strategies for learning and swarming, with all 
feedbacks. We will continue to report our findings and enable knowledge transfer through publications 
and participation in technical conferences. 
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5. RECOMMENDED READING 
 
Lermusiaux P.F.J, T. Lolla, P.J. Haley. Jr., K. Yigit, M.P. Ueckermann, T. Sondergaard and W.G. 

Leslie, 2015. Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for 
Swarms of Ocean Vehicles. Chapter 11, Springer Handbook of Ocean Engineering: Autonomous 
Ocean Vehicles, Subsystems and Control, Tom Curtin (Ed.), In press. 

Lolla, T., Lermusiaux, P. F. J., Ueckermann, M. P. and Haley Jr, P. J. (2014a). Time-optimal path 
planning in dynamic flows using level set equations: theory and schemes. Ocean 
Dynamics, 64(10), 1373-1397. DOI: 10.1007/s10236-014-0757-y 

Lolla, T., Haley Jr, P. J. and Lermusiaux, P. F. J. (2014b). Time-optimal path planning in dynamic 
flows using level set equations: realistic applications. Ocean Dynamics, 64(10), 1399-1417. DOI: 
10.1007/s10236-014-0760-3 

Subramani, D.N., T. Lolla, P.J. Haley and P.F.J Lermusiaux, 2015. A stochastic optimization method 
for energy-based path planning. In: Ravela, S., Sandu, A. (Eds.), DyDESS 2014. Vol. 8964 of 
LNCS. Springer, pp. 1–12. 

Sondergaard, T. and P.F.J. Lermusiaux, 2013a. Data Assimilation with Gaussian Mixture Models using 
the Dynamically Orthogonal Field Equations. Part I. Theory and Scheme. Monthly Weather 
Review, 141, 6, 1737-1760, doi:10.1175/MWR-D-11-00295.1. 

 
6. TRANSITIONS/IMPACT  
 
We met with (and provided theory and software to) different NRL researchers. We transfer results to 
ONR-supported PIs. Mr. Matt Swezey - LT USN is working on his SM with our group on coupled 
ocean physics and acoustics uncertainty forecasts for subsurface counter-detection. We continue to 
work with NRL-Stennis for transition possibilities. We maintain a software web-page for the 
distribution of our results.  MIT undergraduates are involved in this research. They are sponsored by 
MIT’s Undergraduate Research Opportunities Program (UROP). Undergraduates completed research 
and their senior thesis with us on the science of autonomy. Material from this project is used in MIT 
courses. Companies (e.g. air transports, shipping) and research labs (e.g. MIT Lincoln Lab) contact us 
for our methods, software and ongoing collaborations. 
 
7. COLLABORATIONS 
 
We collaborate with several ONR-supported PIs and had meetings with other PIs in the Science of 
Autonomy program. We completed and submitted a joint publication (with Prof. P. Tsiotras and his 
student W. Sun) because of the Science of Autonomy meetings. Collaborations occurred with our 
related ONR project “Stochastic Forcing for Ocean Uncertainty Prediction” (N00014-12-1-0944) and 
Naval Research Laboratory – Stennis project (N00173-13-2-C009). Visitors from the NATO CMRE 
research center and Pisa/Bologna Universities were also given methods and software. 
 
8. PERSONNEL SUPPORTED 
 
Principal Investigator: Dr. Pierre F.J. Lermusiaux 

Graduate Students: Tapovan Lolla, Deepak Subramani 

Research staff: Dr. Patrick Haley Jr. 
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Undergraduate Students: Quantum Wei, Sina Booeshaghi (both for free to this grant and ONR) 

List of any students previously supported by the program who have taken positions performing DoD 
relevant research and where they have gone 

 
9. PUBLICATIONS 
 
Publications resulting from this project (some of these publications started as part of N00014-09-1-
0676): 
 
Journal Articles 
Lermusiaux P.F.J, T. Lolla, P.J. Haley. Jr., K. Yigit, M.P. Ueckermann, T. Sondergaard and W.G. 

Leslie, 2015. Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for 
Swarms of Ocean Vehicles. Chapter 11, Springer Handbook of Ocean Engineering: Autonomous 
Ocean Vehicles, Subsystems and Control, Tom Curtin (Ed.). In press. 

Lolla, T. and P.F.J. Lermusiaux, 2015. A Forward Reachability Equation for Minimum-Time Path 
Planning in Strong Dynamic Flows. SIAM Journal on Control and Optimization, sub-judice. 

Lolla, T., P.J. Haley. Jr. and P.F.J. Lermusiaux, 2015. Path Planning in Multi-scale Ocean Flows: 
Coordination and Dynamic Obstacles. Ocean Modelling, 94, 46-66. 

Lolla, T. and P.F.J. Lermusiaux, 2015. Gaussian-Mixture Model – Dynamically Orthogonal Smoothing 
for Continuous Stochastic Dynamical Systems. Monthly Weather Review. To be submitted. 

Subramani, D.N. and P.F.J. Lermusiaux, 2015. Energy-Optimal Path Planning by Stochastic 
Dynamically Orthogonal Level-Set Optimization. Ocean Modeling, sub-judice. 

Subramani, D.N., P.J. Haley. Jr. and P.F.J. Lermusiaux, 2015b. Energy-Optimal Path Planning in 
Coastal Oceans: Integrating Re-analyses with Stochastic DO Level-Set Optimization. Ocean 
Dynamics. To be submitted. 

Conference Papers 
Cococcioni M., B. Lazzerini and P.F.J. Lermusiaux, 2015. Adaptive Sampling Using Fleets of 

Underwater Gliders in the Presence of Fixed Buoys using a Constrained Clustering Algorithm. 
Proceedings of IEEE OCEANS'15 Conference, Genoa, Italy, 18-21 May, 2015. 

Petillo, S., H. Schmidt, P.F.J. Lermusiaux, D. Yoerger and A. Balasuriya, 2015. Autonomous & 
Adaptive Oceanographic Front Tracking On Board Autonomous Underwater Vehicles. 
Proceedings of IEEE OCEANS'15 Conference, Genoa, Italy, 18-21 May, 2015. 

Subramani, D.N., T. Lolla, P.J. Haley and P.F.J Lermusiaux, 2015a. A stochastic optimization method 
for energy-based path planning. In: Ravela, S., Sandu, A. (Eds.), DyDESS 2014. Vol. 8964 of 
LNCS. Springer, pp. 1–12. 

Sun, W., P. Tsiotras, T. Lolla, D.N. Subramani, and P.F.J. Lermusiaux, 2016.  Pursuit-Evasion Games 
in Dynamic Flow Fields via Reachability Set Analysis. American Control Conference 2016. Sub-
judice. 

Other Publications 
Lolla, T., 2015. Path Planning and Adaptive Sampling in the Coastal Ocean. Ph.D. Thesis, 

Massachusetts Institute of Technology, Dept. of Mechanical Engineering, Feb. 2016. 
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Wei, Q.J., 2015. Time-Optimal Path Planning in Uncertain Flow Fields Using Stochastic Dynamically 
Orthogonal Level Set Equations, B.S. Thesis, Massachusetts Institute of Technology, Dept. of 
Mechanical Engineering, June 2015. 

 
Cumulative List of Journal Articles 
Lolla, T., Lermusiaux, P. F. J., Ueckermann, M. P. and Haley Jr, P. J. (2014a). Time-optimal path 

planning in dynamic flows using level set equations: theory and schemes. Ocean 
Dynamics, 64(10), 1373-1397. DOI: 10.1007/s10236-014-0757-y 

Lolla, T., Haley Jr, P. J. and Lermusiaux, P. F. J. (2014b). Time-optimal path planning in dynamic 
flows using level set equations: realistic applications. Ocean Dynamics, 64(10), 1399-1417. DOI: 
10.1007/s10236-014-0760-3 

Lermusiaux P.F.J, T. Lolla, P.J. Haley. Jr., K. Yigit, M.P. Ueckermann, T. Sondergaard and W.G. 
Leslie, 2015. Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for 
Swarms of Ocean Vehicles. Chapter 11, Springer Handbook of Ocean Engineering: Autonomous 
Ocean Vehicles, Subsystems and Control, Tom Curtin (Ed.). In press. 

Lolla, T. and P.F.J. Lermusiaux, 2015. A Forward Reachability Equation for Minimum-Time Path 
Planning in Strong Dynamic Flows. SIAM Journal on Control and Optimization, sub-judice. 

Lolla, T., P.J. Haley. Jr. and P.F.J. Lermusiaux, 2015. Path Planning in Multi-scale Ocean Flows: 
Coordination and Dynamic Obstacles. Ocean Modelling, 94, 46-66. 

Lolla, T. and P.F.J. Lermusiaux, 2015. Gaussian-Mixture Model – Dynamically Orthogonal Smoothing 
for Continuous Stochastic Dynamical Systems. Monthly Weather Review. To be submitted. 

Subramani, D.N. and P.F.J. Lermusiaux, 2015. Energy-based Path Planning by Stochastic 
Dynamically Orthogonal Level-Set Optimization. Ocean Modeling, sub-judice. 

Subramani, D.N., P.J. Haley. Jr. and P.F.J. Lermusiaux, 2015b. Energy-Optimal Path Planning in 
Coastal Oceans: Integrating Re-analyses with Stochastic DO Level-Set Optimization. Ocean 
Dynamics, To be submitted. 

Sun, W., P. Tsiotras, T. Lolla, D.N. Subramani, and P.F.J. Lermusiaux, 2016.  Pursuit-Evasion Games 
in Dynamic Flow Fields via Reachability Set Analysis. American Control Conference 2016. Sub-
judice. 
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12. Metrics 

[Please include each of the following metrics.  If none, please indicate N/A.] 

Number of faculty supported under this project during this reporting period: 0.7 month 

Number of post-doctoral researchers supported under this project during this period: 0 

Number of graduate students supported under this project during this reporting period:   1.5 

Number of undergraduate students supported under this project during this period:  0 (2 for free) 

Number of refereed publications during this reporting period for which at least 1/3 of the work was 
done under this effort:  8 

Number of publications (all) during this reporting period: 8 

Number of patents during this reporting period:  0 

Number of M.S. students graduated during this reporting period: 0 

Number of Ph.D. students graduated during this reporting period: 1 

Awards received during this reporting period:  2 

D. Subramani, Best poster award, “A Stochastic Optimization Method for Energy-based Path 
Planning” at the Computations for Design and Optimization / Computational Eng. Symposium 
2015 

D. Subramani and T. Lolla, “2015 de Florez Design Competition”, Honorable Mention award 
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D. Subramani, PhD Student, Esteemed Presenter award in the Best Theoretical or Computational 
Category at the Mechanical Engineering Research Exhibition (MERE) 2015. 

13. 1-2 paragraph summary of all accomplishments for the entire grant  

Nine refereed publications on our time-optimal and energy-optimal path planning were published or 
completed and submitted. We developed an exact PDE-based level-set methodology for time-, 
coordination-, and energy- optimal path planning that rigorously integrate ocean forecasts with optimal 
control of autonomous vehicles. We employed the stochastic dynamically orthogonal level-set 
optimization methodology to compute energy-optimal paths (vehicle speeds and headings) of gliders 
missions operating in the New Jersey shelf/Middle-Atlantic Bight Shelfbreak front region. The energy-
optimal planning is performed with realistic multiscale ocean re-analyses obtained from multi-
resolution 2-way nested primitive-equation simulations of the tidal-to-mesoscale dynamics in this 
region. We analyzed the effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts 
on energy-optimal paths for these missions. Results showcase the opportunities for longer-duration 
missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean 
forecasting with optimal control of autonomous vehicles. Stochastic DO level-sets were extended to 
incorporate uncertainty in the environmental flows and used to analyze time-optimal path planning in 
stochastic wind driven barotropic quasi-geostrophic ocean circulation. Results predicted the stochastic 
reachable sets and minimum uncertainty paths for missions operating in such probabilistic flows.  
 
We also developed two novel theories for adaptive sampling that accurately capture the non-Gaussian 
structures of the stochastic fields, and exploit the nonlinear dynamics of the system. They facilitate an 
efficient usage of observational platforms by accounting for the predicted effects of their measurement 
and the current distribution of uncertainty in the system. Optimal observation sites are determined by 
maximizing the mutual information between the candidate observations and the variables of interest. 
We also developed a novel Bayesian smoother for high-dimensional continuous stochastic fields 
governed by general nonlinear dynamics. This smoother combines the adaptive reduced-order 
Dynamically-Orthogonal equations with Gaussian Mixture Models, extending linearized Gaussian 
backward pass updates to a nonlinear, non-Gaussian setting. The Bayesian information transfer, both 
forward and backward in time, is efficiently carried out in the evolving dominant stochastic subspace. 
Building on the foundations of the smoother, we then derived an efficient technique to quantify the 
spatially and temporally varying mutual information field in general nonlinear dynamical systems. The 
globally optimal sequence of future sampling locations is rigorously determined by a novel dynamic 
programming approach that combines this computation of mutual information fields with the 
predictions of the forward reachable set. All the results were exemplified and their performance was 
quantitatively assessed using a variety of simulated fluid and ocean flows. 
 
14. A list of which items on the SOW will be worked on during FY16 (Oct 2015 to Sept 30 2016).  
Please give this to me as narrative text and not just as a list of numbers from your proposal.  Please 
divide by base and potential option if you have both. 
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We will further analyze the GMM-DO smoother in high dimensional systems, including comparison 
with other smoothers, both Gaussian and non-Gaussian. We will start implementing and improving 
such schemes in realistic codes for physical, biological and acoustic ocean dynamics. We expect to 
further develop, optimize and implement our adaptive sampling schemes based on dynamic mutual 
information fields. We plan to develop theories and schemes on adaptive sampling swarms and 
artificial intelligence for collaborative swarms, accounting for uncertain stochastic ocean predictions in 
our planning schemes, both for single paths and for coordinated paths maintaining vehicle formations. 
We also plan to investigate other optimality criteria such as dynamics-optimal and swarm-optimal. We 
plan to start integrating our novel smoothing, adaptive sampling and path planning to enable long-
duration environmentally-adaptive autonomous rigorous naval systems. We plan to continue to transfer 
the methods and algorithms to NRL. We expect to continue to apply our work to four-dimensional 
realistic ocean fields and/or participate to sea exercises, aiming to couple ocean-acoustic predictions, 
uncertainty prediction, autonomous strategies for learning and swarming, with all feedbacks. We will 
continue to report our findings and enable knowledge transfer through publications and participation in 
technical conferences. 
 
15. If you are in your final year, will you require a no-cost extension to your period of 
performance?  If so, until when? 

- N/A 
 

16. 1 summary PowerPoint slide of your entire project in any format.  This should be something I 
can use to brief your effort to an external audience at a professional society meeting or to explain the 
significance of your work to my management in a few minutes when I am overviewing my entire 
program. 
 

See attached 


