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“...as we know, there are known knowns; there are things we know we know. 
We also know there are known unknowns; that is to say we know there are 
some things we do not know. But there are also unknown unknowns -- the 
ones we don't know we don't know.”  Donald Rumsfield (February, 2002).



Sonar Detection Performance in an Uncertain Environment
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OBJECTIVE:  To achieve in situ assessment of sonar detection performance when the 
ocean environment and the noise field directionality are uncertain.

Modeling Environmental Uncertainty        vs.         In Situ Performance Assessment
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e.g. What’s the uncertainty in TL vs. Range? e.g. What’s my probability of detection for a 
given PFA as a function of hypothesized SNR?

• To achieve agreement between predicted and actual detection performance, signal
and noise model uncertainty must be captured in the detection statistic.



A Simple Example: The “Uncertain” Matched Filter
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• When the signal, channel response, and statistics of the Gaussian noise are known exactly, 
the optimum detector is the matched-filter (MF) whose performance depends only on SNR.
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• When the receiver is mismatched to the channel response, theoretical predictions 
assuming the channel is known exactly often significantly over-predict performance.

• To bridge the gap between theoretical predictions and actual performance, channel 
uncertainty must be built into the assumed receiver design.  It doesn’t work simply to 
treat SNR as a random variable in the formulas for matched-filter performance.

• The Bayesian approach:  Treat G(f) as a random process with prior statistics and 
compute the performance of the likelihood ratio test (LRT).

• The adaptive CFAR approach: Treat G(f) as being a function of unknown parameters 
and compute the performance of the generalized likelihood ratio test (GLRT). 



Sonar Performance Assessment in an Uncertain Ocean 
Environment
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• Detection performance depends on the prediction algorithm and the uncertain 
environment in which it is evaluated

• What are the random variables and what do we average?
• Examples of prediction scenarios:

• Predictor assumes a known environment and is evaluated in a known 
environment; i.e. no environmental uncertainty (Matched ocean detector 
performance) 

• Average the performances of the predictors that are optimum for each 
possible environment over the environmental uncertainty (Average
performance of matched ocean detectors)

• Using the average ocean as the ocean, average its performance over the 
environmental uncertainties (Average performance of mismatched 
detectors)  

• Optimally incorporate the environmental uncertainty in the prediction 
algorithm and obtain its performance in that uncertain environment 
(Optimum performance prediction)

• For a particular sonar system, could average its performance over 
environmental uncertainty as the prediction for that particular system in 
that uncertain environment.



NRL Benchmark Ocean Environment
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CD+=1600 ±50m/s

Cl = 1750±50m/s

f=450Hz

1:1:100m

full spanning

vertical arrayD=100 m

C0 =1500±5 m/s

CD- =1480 ±2.5m.s

ρ = 1.75±0.5 g/cm3

α = 0.35±0.2 dB/λ

100 elements
VLA

ρ = 1.75±0.4 g/cm3

α = 0.35±0.2 dB/λ

t=100 m

Abbreviation variable mean value Range of uncertainty
D Ocean depth 100m |∆D|=5m 
C0 Ocean surface sound speed 1500m/s |∆ C0|=2.5m/s 
CD- Ocean bottom sound speed 1480m/s |∆ CD-|=2.5m/s 
CD+ Upper sediment sound speed 1600m/s |∆ CD+|=50m/s 
Cl Lower sediment and sub-bottom sound speed 1750m/s |∆ Cl |=100m/s 
t Sediment thickness 100m 0m 

ρ Sediment and sub-bottom density 1.75g/cm3 |∆ρ|=0.25g/cm3 

α Sediment and sub-bottom attenuation 0.35dB |∆α|=0.25dB 
Zs Source depth 50m 0m 
Rs Source range 6km 0m 
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Comparison of performance (ROC) of several possible sonar detection 
prediction methods as a function of environmental uncertainties
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Matched-Ocean predictor
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From Environmental Uncertainty to Wavefront 
Uncertainty
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• Environmental uncertainty characterized by probability density functions of 
environmental parameters and ocean acoustic model (or by realizations)

• Uncertain signal wavefront 

where is the ocean transfer function sampled at an N sensor array*

• Signal matrix: matrix of signal wavefronts due to environmental uncertainty

• Total signal-to-noise ratio at the receivers
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From Wavefront Uncertainty to Bayesian Sonar Detection 
Performance Prediction
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• Model-based Monte Carlo methods for ROC:  Can obtain optimal performance 
prediction incorporating environmental uncertainty but no insight into how to interpret the 
ROC in terms of fundamental parameters representing the uncertainty in the 
environmental parameters.  Can be computationally intensive.

• Model-based analytical approaches for ROC:  Have derived simple analytical 
expressions for the ROC for optimal performance prediction incorporating environmental 
uncertainty.  The ROC is expressed in terms of the SNR and the rank of the signal matrix, 
R, where R captures the environmental uncertainty

Model-based Bayesian Approaches

PCL = Probability of PCL = Probability of 
correct localizationcorrect localization

Signal & Noise Models that incorporate Signal & Noise Models that incorporate 
probabilistic models of environmental probabilistic models of environmental 

uncertainty and acoustic propagation modeluncertainty and acoustic propagation model
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A posterioriA posteriori probprobLikelihood ratioLikelihood ratio

Analytical (and MC) methods: ROC and PCL expressionsAnalytical (and MC) methods: ROC and PCL expressions
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Analytical Bayesian Sonar Detection Performance 
Prediction (ROC)

Environment Opt Detector statistic ROC performance
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Example of capturing environmental uncertainty in 
signal matrix rank estimation 

Rank of the signal 
covariance matrix

Uncertain  
water depth

|∆D|≤2.5 m

Uncertain 
Surface 

Speed |∆s|≤
2.5 m/s

Uncertain 
Bottom Speed

|∆b|≤ 2.5 m/s

Uncertain 
source depth

|∆Zs|≤ 5 m

General 
uncertain 

NRL benchmark 
ocean

8 3 3 3 13

NATO Ocean 6 3 3 3 9

3.5±2.5 m1520±50 m/s
1580±50 m/s

1600±50m/s

127.5±2.5 m
1526±2.5 m/s

1508±2.5 m/s

Density 1.7±0.5 g/cm3

Attenuation 0.2±0.2 dB/λ

100 elements
VLA

Density 1.8±0.4 g/cm3

Attenuation 0.2±0.2 dB/λ

50 m

6 km f=450Hz

Note: NATO ocean parameters come from reference (1995, Gingras and Gerstoft).
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Courtesy of MPL: http://www.mpl.ucsd.edu/swellex96

SWellEx-96 Event S5
5/10/96 23:15-5/11/96 00:30 GMT

Environmental Model

23.5m
1572 m/s

1593m/s

1881m/s

216.5 m

1522 m/s

1488 m/s
Density 1.76 g/cm3

Attenuation 0.2dB/KmHz

21 elements
VLA

Density 2.06 g/cm3

Attenuation 0.06dB/KmHz



Detection Performance Prediction Experimental Results
(SWellEx-96 Event S5 ): Wave Front Uncertainty Due to Source Motion
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Source range of one particular track ((km)
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- Matched-ocean scenario: known source range for each receiving spatial data vector
- Source motion scenario:  source range uncertainty of ± 450m for each data frame.

Frame: 21 channels x 900snapshots (5mins), updated per 100snapshots



Detection Performance Prediction Experimental Results
(SWellEx-96 Event S5 ): Impact of prediction method
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Adaptive CFAR Detection in an Uncertain Ocean
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• In an uncertain waveguide, the M-sensor passive detection problem is given by:

• We use                                   to define a reduced-dimensional signal subspace 
whose rank p ( or r in Loren’s slides) increases with environmental uncertainty.

• Adaptive detection assumes a set of i.i.d “training vectors” are available to 
estimate the unknown Gaussian noise covariance,

• For adaptive detection in an uncertain ocean, the CFAR generalized likelihood 
ratio test (GLRT) is given by:

where
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Analytic Probability of Detection vs. Output SNR
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• If the signal wavefront and noise covariance are known exactly, the likelihood 
ratio test (LRT) detection statistic is non-central Chi-square distributed with PD:

• Setting the level      to achieve a specified PFA, this equation can be numerically 
solved to find the SNR associated with a specified PD.

• For an uncertain signal wavefront and noise covariance matrix, the statistics of 
the optimal adaptive CFAR GLRT have been derived by (Kraut et.al. 2001) with:

• Now PD also depends on the ocean uncertainty through the signal subspace 
dimension, p, the number of training snapshots available to estimate the noise 
field, K, and the number of sensors in the array, M.
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Estimating Output Signal-to-Noise Ratio

16

• Detection performance depends on output SNR defined by

• Prediction of output SNR at a particular time and place would require modeling of the 
signal wavefront, noise covariance, and source level which are all uncertain.

• In practice, it would therefore make sense to model output SNR as a random variable 
with a priori density determined by environmental and source level uncertainty.

2 1H HSNR s a U R Ua
η

−=

• Alternatively, to compare our 
performance predictions for a 
particular track of real data, we 
used a maximum likelihood 
estimator (MLE)output SNR 
which is robust with respect to 
wavefront uncertainty (large p) 
and noise covariance (large K).

• Histogram (right) of simulated 
SNR MLE for signal rank p=8 
and noise training data K=300
versus true SNR of 13 dB.



Horizontal Array Data from SWELLEX-96 Event S59
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• The SWELLEX-96 dataset (courtesy MPL/SIO) was used to validate analytic PDF’s and 
detection performance prediction.  Previously analyzed S5 event with source only.

• Narrowband data from the M=27 sensor,  240-meter long, non-uniformly spaced 
horizontal line array AODS North was compared with detection performance 
predictions for the S59 event. Scenario (left) 10 frequency BTR (right)
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Detection Statistics Over Entire S59 Event Track  
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• Comparison of analytic PDF under H0 (noise only) and H1 (signal+noise) versus 
SWELLEX-96 data at 136 Hz for p=4 and K=128 (right figures) using estimated 
distribution of SNR’s (left figure) over entire 65 minute track.

• Note good agreement between observed and predicted PDF’s for this level of signal 
wavefront uncertainty.

Estimated PDF of SNR over S59 track 
over 10 frequencies between 112 and142 Hz.

PDF of Detection Statistics vs. Theory over Track

S59 Event Data (Noise Only)

Theory

Theory

S59 Event Data (Signal + Noise)



Adaptive CFAR GLRT vs. Bearing for S59 Event
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• Difficult to predict match between theory and data from visual inspection, although for 
p = 1, under-resolution and noisy background for K=32 suggests sub-optimum performance.

K=128, p = 1

K=128, p = 4

K=32, p = 1

K=32, p = 4



Event S59 Detection with Signal Wavefront Uncertainty
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• Probability of detection versus SNR for the adaptive GLRT detector for real S59 M=27 
HLA North event data versus analytic prediction with increasing signal wavefront 
uncertainty (i.e. subspace rank p).  Snapshot support K=128 (left) and K=32 (right). 

• Good agreement achieved between theory and data for uncertain wavefront (p=4) model 
(red curves).  Note mismatch for p=1 prediction versus real data when plane-wave 
beamforming assumed which, in part, represents prediction error of current practice.

PD vs. SNR for K=128 over 10 tones PD vs. SNR for K=32 over 10 tones

PD

Data

Theory



Event S59 Detection with Limited Noise Training Data
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• GLRT PD versus SNR for real S59 AODS North data versus theory with limited 
snapshots K.  Signal wavefront uncertainty:  p=1 (left) and p=4 (right). 

• Good agreement achieved between theory and data for uncertain wavefront (p=4) model 
(right) with mismatch evident when p = 1 plane-wave modeling assumed (left).  Note 
signal contamination in noise training data results in PD reduction at high SNR’s.

PD vs. SNR (p=1)                                                PD vs. SNR (p = 4) 



Summary and Conclusions
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• Bridging the gap between predicted and actual sonar performance requires capturing signal, 
noise and environmental model uncertainty in the detection statistic. 

• Fast, analytical methods for characterizing the performance of both optimum Bayesian and 
adaptive CFAR detectors have been derived.

• Signal covariance matrix rank is an efficient measure of ocean environmental uncertainty for both 
Bayesian and adaptive CFAR detection performance prediction.

• Analytical methods derived that approximate the ROC for optimum Bayesian detection for an 
uncertain ocean environment model in terms of the signal covariance matrix rank, SNR, and a 
signal-to-noise interference coefficient.

• Good agreement between theoretical and real data performance for single-source SWELLEX-96 
S5 event achieved for both vertical and horizontal arrays when uncertainty in the signal wavefront 
is accounted for.

• Recent results for the multiple source SWELLEX-96 S59 event using the AODS North horizontal 
array yield similar agreement between theory and real data detection performance when 
wavefront uncertainty and limited snapshot support are accounted for.

• At higher SNR’s, signal contamination of the noise training data can cause the measured PD to 
be notably less than analytical prediction when the training data limited.

• Further work is required to extend theoretical adaptive CFAR detection results to the case where 
signal is present in the training data and highly dynamic scenarios where K < M.

• Further work is required to determine the priorities of specific ocean environmental parameters on 
detection performance prediction, extending and using the analytical Bayesian performance 
prediction methods derived.


