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Bottom Property Parameter Sensitivity

• Model-data sensitivities are required to 
construct an accurate picture of effect of 
variability on acoustic prediction uncertainty
– Required quantities are the functional or Frechet

derivatives

– Other quantities of interest are obtained from the 
derivative chain rule

• Linearize about a global model minimum
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Linearization about Global Minimum

is an N x M matrix of Frechet derivatives
N = number of data
M = number of model parameters
N > M     overdetermined
M > N     underdetermined

⇒

⇒

d = g m( )

= g m0( )+ ∂g
∂m m− m0( )+ ...

d − d0 = G m−m0( )

discrete d = Gm continuous d =   G x( )m x( )dx∫

G = ∂g
∂m
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Data Resolution
• Assume we have found a generalized inverse (       ) that 

solves our problem in some sense
G−g

mest = G−gdobs

• How well does our model estimate fit the data?

dpre = G mest = G G−g dobs

= G G−g = Ndata resolution matrix

N = I ⇒ dpre = dobs zero prediction error

N ≠ I ⇒ dpre ≠ dobs non− zero prediction error

• The N x N resolution matrix N characterizes whether the 
data can be independently predicted or resolved
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Model Resolution
• True but unknown model          such thatmtrue

G m true = dobs

• How close is a particular estimate         to          ?mest mtrue

mest = G−gdobs = G− g G mtrue[ ]= G− g G mtrue

= R mtrue

• is the M x M model resolution matrixR = G−gG
R = I      model is uniquely determined
R ≠ I      model is a weighted average of the true model

⇒

⇒

• Plots of the rows of the resolution matrix can be useful in 
determining to what scale features can actually be resolved



Applied Physics Laboratory  •  University of Washington

Trade-off of Resolution and Variance  1.
CT Scan Example

(b) Coarse discretization
- overdetermined problem
- low resolution (large box)
- low variance

(large # of measurements/box)

(c) Fine discretization
- underdetermined problem
- high  resolution (small box)
- large variance

(small # of measurements/box)
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Analytical Expressions for Partial Derivatives

d =  Gm= ∂g
∂mm

                       ∂g
∂m = ∂P
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A Handful of Partial Derivatives
•If the source and receiver are assumed to be at the same
level z, the partials are simple functions of the depth 
dependent Green’s function G.
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•Derivatives with respect to sound speed c and attenuation
α are easily computed.
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East China Sea - Continental Shelf
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Frechet Derivative 1
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Frechet Derivative 2

• At a grazing angle of 
45 bulk modulus 
perturbations have a 
greater effect on the 
measured pressure 
than density, which 
will be poorly re 
resolved below 2m.

• Effects of density are 
out of phase with the 
effects of bulk 
modulus.
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Frechet Derivative 3

• The derivative for the
sound speed c is much
larger than the derivative
for the attenuation α. This
isn’t surprising considering
the 1/ω dependence of 
∂P/∂α.
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Frechet Derivative 4

• At normal incidence ∂P/∂c is 
identically 0. Pure sound speed
perturbations are forward 
scattering. (This is why the 
parabolic equation works so well
in ocean acoustics.)

• Note that the scale on the 
abcissa is amplified by a factor  
of 100 from the previous slide.
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Model Resolution
(4 Model Parameters, 6 Measurement Angles)

• Angles: 1˚, 15˚, 25˚, 45˚, 60˚, 90˚

• By the addition of more data, 
the model parameters at the
water sediment interface can be
resolved. 

• The model resolution matrix for an
over-determined problem is 
always diagonal.
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Data Resolution
(4 Model Parameters, 6 Measurement Angles)

• At progressively higher angles the
ability to predict the data degrades.

- Data not uniquely predicted by model

• Conclusion: We have a model which
fits the data. However, our model is 
not too good at predicting the high 
grazing angle data.
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Model Resolution
(SEPES: Greg Anderson, Darrell Jackson)

(Mixed over/under-determined)

• Model: 44 scattering angles

• Data: 47 reverberation samples

• Low scattering angles are well
resolved

- Lambert’s law: strong angular
dependence at low grazing angles

• Large grazing angles are poorly
resolved

- Lambert’s law: weak angular
dependence at high grazing angles
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Data Resolution
(SEPES: Greg Anderson, Darrell Jackson)

• How well can we predict the data
from our model?

- Reverb for low grazing angles is well
predicted.

- Reverb for high grazing angles is
poorly predicted.

• Conclusion: At high grazing angles
the data are not uniquely predicted
by the model.
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Optimization Process for
Nonlinear Inversion Problem

(implemented in Fortran nonlinear optimization package SNOPT)

final inverted
model

parameters

initial guess
model

parameters

“forward model”
(acoustic bottom model)

candidate
BL & BSS

derivatives of 
candidate BL & BSS

w.r.t model parameters

measured
BL & BSS

final
BL & BSS

results

candidate
model

parameters

Feedback loop: minimize data misfit and meet constraints
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Mathematical Description

objective function = data misfit: B(φ) = { BL(θ), BSS(θ) }

minimize   f (x) = Σ ( B(φ) – B(φ) )2x φ
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constraint functions = BL & BSS bounds, param bounds, corr distance C:
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Synthetic Input Data
(for both BL & BSS)

+ +

Output from
bottom model for
“target bottom”

Angle-independent
Gaussian noise,
equal standard
deviations at

all angles here

=

Additional (small
amplitude)

randomized 
sinusoidal trend

Synthetic data

Real data only covers a small range of angles, but this synthetic data covers all 90º
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Example Inversion Results
measured data :  0.6m medium silt over muddy gravel
initial guess :  0.2m very fine sand over

muddy sandy gravel

freq = 1500Hz
c0 = 1545m/s

variable         mean               stdev
--------------------------------------------
rho2          1.68956801   +/- 0.06893113
nu2           1.08795427   +/- 0.00834763
delta2        0.00893704   +/- 0.00295667
sigma2        0.00185622   +/- 0.00011848
gamma2        3.92301159   +/- 2.11525432  *
w2            0.00001582   +/- 0.00062948  *
d2            0.63765071   +/- 0.01389444
rho3          2.05942681   +/- 0.04665487
nu3           1.16064270   +/- 0.00550594
nu3t          0.01000000   +/- 0.01216358  *
delta3        0.02120026   +/- 0.00698733
delta3t       0.01000000   +/- 24.29685238  *
sigma3        0.00179095   +/- 0.00010520
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Exploring Uniqueness Issues

Sum-of-sqrs-of-normed-diffs between
final and target parameter vectorsFinal cost function values

DEFINITIONS:
“Target bottom” – the one used to create synthetic data.
“Initial bottom” – the one used for the initial guess model parameters.
“Bottoms #1-33” – rock… gravel… sand… clay
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Correlation Matrix R of Solution Parameters
(Local linear approximation)
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for the previous example inversion run an easier-to-interpret run
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Data Resolution Matrix at the Solution

N = GG†
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Caveats & Future Work

• This work inverts synthetic data – ultimately must 
invert real data at arbitrary angles.

• Extend the problem to invert reverberation rather 
than just bottom loss & backscattering.

• This work inverts only one frequency – ultimately 
must invert multiple frequencies at once.

• Investigate uniqueness problem further by using
a global optimization technique such as genetic 
algorithms or simulated annealing.
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3 Sources of BL/BSS Variability

Each involves a Gaussian distribution with mean and standard deviation.
Sources of variability can be “turned off” by using mean & setting std dev to zero.

2 layer 
gabim-
analytic 
model

grainsize
to 

geoacous
parameter 
regression

measured 
grainsizes

geoacous
parameter 

distribs

variations 
in 

measured 
grainsize

ASIAEX data
statistical 

uncertainty 
of grainsize
regression

Global data
variations 

in 
sediment 
thickness

ASIAEX data

grainsize Mz =
log2( r / 1mm )

BL/BSS hists

Monte Carlo runs sample those distribution 1000 times,
making 1000 pairs of BL & BSS curves which form the histograms.
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Statistical Uncertainty of 
Grainsize Regression

desire continuity and correlated errors about mean fits Grainsize Algorithm Update
(Briggs, Jackson, Moravan)

GABIM/Hamilton regressions
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BL/BSS Curves and Their Histograms
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Results for Sources of Variability On/Off

Grainsizes = on
Regression = on
Thickness = on

Grainsizes = off
Regression = on
Thickness = off

Grainsizes = on
Regression = off
Thickness = off

Grainsizes = off
Regression = off
Thickness = on



Applied Physics Laboratory  •  University of Washington

Conclusions - 1

• The Frechet derivatives are the sensitivity functions for the 
model and data.

– Large derivatives ⇒ data are sensitive to the model

– Small derivatives ⇒ data insensitive to the model

• Fast efficient implementation permits:
– Rapid characterization of model/data sensitivities

– Investigation of model parameter coupling and model uniqueness.

– Experimental design (Resolution matrices are independent of 
actual data values.)

– Quantitative characterization of nonlinear inverse solution by 
linearization about global minimum.
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Conclusions - 2

• Application of Monte Carlo techniques to BSS/BL indicates
grain size material parameter regression is large source

of uncertainty.

• Comparison of BSS/BL from mean parameter values with the 
histograms of BSS/BL illustrates nonlinearity of the model. 
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Seabed Variability (C. Holland lead):
June 2004 Review – 1

•Publications:

- Odom, R.I., “Frechet derivatives for shallow water ocean
acoustic inverse problems,” (abstract), JASA, 113, p2191,
2003. 

- Odom, “Model and data resolution for ocean acoustic for
ocean seabed inverse problems,” (in preparation for
JASA/IEEE-JOE).

- Ganse, A., Title TBD, content is on Monte Carlo studies (IEEE-JOE)

• Contributions:

-Construction of model and data resolution matrices from
analytical expressions for the Frechet derivatives.

· Large magnitude off-diagonal terms indicate model 
non-uniqueness.
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Seabed Variability (C. Holland lead):
June 2004 Review - 2

• Contributions continued:

· Important because the resolution matrices provide direct
information about data resolution and model uniqueness

· Valuable for experimental design

- Monte Carlo simulations for bottom reflection loss and
bottom backscattering (A. Ganse).

· Employs Frechet derivatives together with grain size
grain size information to show variability of BSS and BRL
with respect to grain size range.

• Seabed Team contributions:

- Beginning to quantify how depositional processes affect
acoustics by their control of grain size.
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Seabed Variability (C. Holland lead):
June 2004 Review - 3

• Seabed Team contributions continued:
- Brought together quite a disparate group of individuals
with very different perspectives and cross-disciplinary
perspectives.

• Database weaknesses 
- Bottom grain size data is extremely sparse (also noted by 

J. Fulford).
· Yields large variances, and sometimes the data is so sparse

that it is impossible to compute a real variance. The
“engineering solution” to this problem is to use a variance
computed from other regions.

· Only real solution is to collect more data.


