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AREA
Research Strategy

Sonar configuration and performance metrics
Shallow water MFP – VLA

Optimal Parameterization
System Orthogonal Functions (SOF)

• Orthogonal or uncoupled in sonar performance statistics
• Minimize and identify parameters to be targeted by REA

Acoustic Data Assimilation
Consistent fusion of any acoustic data with other REA data
Inherently targets  parameters most critical to sonar performance

REA Deployment Optimization
Non-acoustic on- and off-board sensors and platforms (e.g. AUV)
Complete System Simulation Framework



Matched Field Processing

Sourc
e

Source Localization Ambiguity Surface
Shallow Water Evaluation Cell Experiments 

(SWellEX, Booth, et al., 1996) 

Input SNR = 0 dB
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Matched-field Performance Threshold
Parameter Mismatch

Performance analysis tools
• Statistical data model
• Mean-square error
• Cramer-Rao bounds

– High SNR
• Ziv-Zakai bound

– All SNRs
– Computationally intensive

• Modified Ziv-Zakai bound (Xu
and Baggeroer)
– Include the mismatch effect

• Bayesian framework
– Random parameters
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Matched Field Processing
Environmental Parameter Mismatch

Example environmental model in SWellEX-3

High SNR: Strong environmental sensitivity

Low SNR: Weaker environmental sensitivity
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Parameter Coupling
Weak Coupling
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Coupling of Location and Environment
Strong Coupling
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Matched Field Source Localization
Environmentally Robust Parameterization

Ignoring the environmental uncertainty could introduce significant environmental 
mismatch, and thus serious bias in source localization

Environmental parameters uncoupled from source location is ideal, but impossible

AREA: Deploy REA resources to target environmental parameters which have strongest 
coupling to source location for actual sonar system 

Decoupled environmental representation is desired:

Reduce the degrees of freedom
Isolates the relative significance of the individual parameters
Simplify the design of optimal adaptive sampling of environment

Cramer-Rao bound matrix provides a framework for developing optimal acoustic 
parameterization



Sound speed uncertainty
Ocean waveguide properties
Sonar Configuration 

IsovelocityIsovelocity channel + Shelf Break Primer SVP statistics (G. Potty channel + Shelf Break Primer SVP statistics (G. Potty et alet al., 2000)., 2000)

CRB matrix using 6 SVP coefficients
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Cramer-Rao Matrix

Source Range – Environment Coupling

Source
Range

Environmental parameters
EOF/SOF

Target
Parameters

EOF

SOF

W. Xu and H. Schmidt, "System-orthogonal functions for sound velocity profile perturbation," Submitted 
for publication in  IEEE Journal of Oceanic Engineering.
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Haro Strait’96
Data Assimilation – No Acoustics
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Ocean Acoustic Tomography



Acoustic Data Asimilation
(Elisseeff, Schmidt and Xu, IEEE JOE 2002)



Acoustic Data Assimilation
Simulation Validation
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Random Ocean Variability
Ocean Sound Speed Profile Variation Over Time
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AREA Ideal Objective:
Minimize Sonar Performance Prediction Uncertainty
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Complete System Simulation Framework 
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AREA: Acoustic Adaptive Sampling
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AREA: Acoustic Adaptive Sampling
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Random Ocean
Minimizing SPPU Impossible
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Sequential Decision Making

Current 
Measurement 

Results Collection

Decision 
Maker

Next Sampling 
Location

In-situ 
Measurement

New Measurement 
Results Collection Final 

Measurement 
Results 

Collection

Objective: min E{ SPP Uncertainty}

Time



Dynamic Programming
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AREA as DP Problem
State: A matrix containing all initial measurement 
results and all in-situ measurement results.
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Control: A vector containing next sampling 
location constrained by AUV’s performance.
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Cost:
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By Conventional DP Algorithm:
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Rollout Algorithm Based on Greedy 
Algorithm
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AREA
Accomplishments-I

Quantitative Sonar Performance Assessment
Non-local performance bounds 
Several Journal publications completed (Xu etal) 

Optimal through-the-sonar parameterization
SOF: Uncoupled in sonar response
Quantifies environmental sensitivity
Identifies parameters to be targeted by REA resources
Journal paper in revision

Through-the-sonar Acoustic Data Assimilation (ADA)
Consistent fusion of acoustic and non-acoustics data
Inherently estimates most critical environmental parameters
Journal paper published



AREA
Accomplishments-II

AREA Simulation Framework Prototype
Modular, structured MATLAB-C++ framework
HOPS compatible
Hi-Fi Sonar modeling

• RAM
• SEALAB

Dynamic Programming decision-maker prototype
Next: On-board implementation and demonstration in 
MURI’06



Capturing Uncertainty
MIT Publications

P. Elisseeff, H. Schmidt, and W. Xu, “Ocean acoustic tomography as a data assimilation problem,”
IEEE Journal of Oceanic Engineering, Vol. 27, No. 2, pp275-282, 2002.
W. Xu and A. B. Baggeroer, “Quantitative ambiguity analysis for matched-field parameter 
estimation,” J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 2, pp2716, 2001.
W. Xu, A. B. Baggeroer, and H. Schmidt, “Quantitative ambiguity analysis for matched-field source 
localization,” Proc. of Asilomar Conference on Signals, Systems, and Computers, pp448-452, 2002.
A.B. Baggeroer and H. Schmidt, “Performance Bounds on the Detection and Localization in a 
Stochastic Ocean,” in Impact of Littoral Environmental Variability on Acoustic Predictions and 
Sonar Performance, pp507-514, 2002.
H. Schmidt, “AREA: Adaptive Rapid Environmental Assessment,” in Impact of Littoral 
Environmental Variability on Acoustic Predictions and Sonar Performance, pp587-594, 2002.
W. Xu and C. D. Richmond, "Quantitative ambiguity analysis for matched-field source localization 
under spatially-correlated noise field," to appear in Proc. of IEEE/MTS OCEANS'03, 2003. 
W. Xu, A. B. Baggeroer, and K. L. Bell, “A bound on mean-square estimation error with 
background parameter mismatch,” to appear in IEEE Trans. Information Theory (accepted). 
W. Xu, A. B. Baggeroer, and C. D. Richmond, “Bayesian bounds for matched-field parameter 
estimation,” in revision for IEEE Trans. Signal Processing.
W. Xu and H. Schmidt, "System-orthogonal functions for sound velocity profile perturbation,“
Being revised for publication in  IEEE Journal of Oceanic Engineering.
W. Xu, A. B. Baggeroer, and H. Schmidt, "Performance analysis on matched-field source 
localization: Simulations and experimental results," in preparation for IEEE Journal of Oceanic 
Engineering.



AREA
2004 Plans

AREA Concept development
• Dynamic Programming Adaptive Control
• Acoustic Rapid Environmental Assessment - SUSHI

AREA Simulation framework development
• Integrate MINI-HOPS for real-time data assimilation
• Integrate with ADAPTS distributed computational environment for 

multi-disciplinary ocean forecasting  
• Initiate the incorporation of Acoustic Data Assimilation
• Integrate system orthogonal function parameterization

Transitions
• ADA /MINI-HOPS

o NSF-ITR
o AOSN-III MURI

• High Fidelity Sonar modeling
o PLUS –ONR/



Capturing Uncertainty
Transition Potential

New Uncertainty-Mitigating Operational Paradigms

Intelligent, Mobile Off-board Sensor Networks. 
• Sonobouys WASPs, SUSHI
• Sensors on Platforms Sensing Systems

Integrated Sensing, Modeling, Processing and Platform Control 
• Environmentally Adaptive Sonar Technology (EAST)
• Sonar Adaptive Environmental Assessment (AREA)
• Target-Adaptive Synthetic Array Apertures (SUSHI)
• Multi-platform Autonomous Collaborative Sensing
• Platforms as Virtual Sensors (nested processing)

Research Needs

Robust Parameterization

Acoustic Data Assimilation

Autonomous Network Navigation and Control

Multi-static, model-based sonar processing

Multidisciplinary Synergies
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