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Goals

» Use existing science to characterize and
represent the uncertainty in the tactical and
environmental picture due to uncertainty
about environmental features that affect
acoustic detection and classification of
threats.

* Improve prosecution of threats!

Focus on active acoustic sensors



Overview

 Provide:

— measures or estimates of the uncertainty in
environmental parameters relating to the ocean and
bottom;

— methods of efficiently propagating this uncertainty
through acoustic models;

— methods for estimating and representing the effect of
environmental uncertainty on estimates of tactical
quantities such as target state.

— tools for computing, visualizing, and mitigating the
resultant uncertainty at all levels of the process.
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Key Questions

 How to merge regional ocean predictions
with internal wave estimates to generate
sound speed distributions?

e How to characterize environmental
uncertainty?

* How to propagate uncertainty through an
active acoustic model?

* Can we provide and represent a more
realistic target state estimate by accounting
for environmental uncertainty?
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Significant Changes

* Added NRL-DC (POC: Greg Schmidt) for visualization
* Focus on East China Sea

— More relevant area

— Environmental Characterization
» Littoral Advanced Demonstrations
« NAVOCEANO (sound speed, transmission loss, bottom composition)
* Environmentally Adaptive Sonar Probe Pulses
* Broadband impulsive (SUS) Sonobuoy data
« ASIAEX
— Tactical....

« Several experiments
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color for uncertainty

Brightest color represents 60 meters error

Error estimated from 2 nautical miles database
versus high resolution data
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ECS bathy + unc. Using
spherical glyphs

® = approximately 60 meters

ECS bathymetry using spherical glyph method. Same data, different views. More uncertainty maps to
larger spheres. This methods is based on Pang/Lodha/Wittenbrink’s work...
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Bottom type visualization
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(a) Left shows geo-acoustic bottom types using color shades. (b) Right shows the same with depth uncertainty data.

6/20/02 ONR Uncertainty Review NRL-DC/Schmidt



Bathymetry displayed with:
» color-shaded shallow geologic sediment characterization
* gray- shadlng and SIZG of glyphs show depth uncertainty
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Geophysical-Acoustic
Rottom Interaction Mode] (GABIM)

GABIM (2000)

—>Gp,r(6)
Jackson | o ... (0)

T Spvani (9)

Anisotropic
Volume

Basement
Roughness

e SAFARI bottom propagation kernel
(Schmidt, 1988)

— arbitrary bottom structure

— shear waves, transverse
isotropy if necessary

— fast, accurate numerical
implementation
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 Model-data sensitivities are required to construct an
accurate picture of effect of variability on acoustic
prediction uncertainty

— Required quantities are the functional or Frechet derivatives

(GP an
0K’ 0p

— Other quantities of interest are obtained from the derivative chain
rule

« Linearize about a global model minimum
« The Frechet derivatives (using GABIM) are the sensitivity
functions for the model and acoustic data.
— Large derivatives = acoustic data are sensitive to the model

— Small derivatives = acoustic data insensitive to the model
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East China Sea
Velocity and Density Profiles
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Frechet Derivative
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Bottom characterization using
Inversion

 Several SUS data sets in the ESC area of interest

* Bottom loss and scatter vs frequency and grazing
have been found via inversion

— Also used to estimate surface sediment roughness
spectrum and sediment volume scatter

* Comparisons to TL have been made and show
improvements over using historical bottom loss

 Tactical sonar reverberation and TL data are
available for inversion.
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Decades of edited MOODS
profiles are used to derive
statistical relationships
between surface height and
temperature and subsurface
temperature and salinity
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Modular Oceanographic Data
Assimilation System (MODAS)
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MODAS Uncertainty

Sample MODAS Prafile
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Goal: begin to evaluate uncertainty of MODAS
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This 1s a poor comparison because the thermister chain was
swinging in the current - we’ll correct for the depth excursions and
re-compare. Also evaluate for internal wave spectrum (if
possible).
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East Asian Seas
Nowecast/Forecast System

* An automated real-time ocean prediction system
— from 17°S to 53°N and from 99°E to 170°E
— 1/8° horizontal resolution, 26 vertical levels

oy, o
CF - e
Cce g TechnO\og

e Produces daily nowcast/forecast up to 72 hrs of
— sea level variation
— currents
— temperature
— salinity
e Restarted everyday from previous nowcast fields

— continuously assimilates MODAS synthetic temp/salinity fields based on
» sea surface height anomaly from satelite (GFO, TOPEX/Poseidon, ERS-2)
* (AVHRR) sea surface temperature

* Forced by NOGAPS
— wind stress
— surface heat fluxes
— surface air pressure
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Dynamic Oceanography
Plans

* Hydrostatic (NCOM) Model
— Enhance 1/8° EASNEFS to 1/16°
— Add high resolution bathymetry (DBDB2)

— Nest high resolution models inside EASNFS around
SHAREM area at 1/24°, 1/72°, 1/216°, and possibly

higher.
* Nonhydrostatic models

— Uses simplified coastlines and bathymetries (at present)
« AsiaEx
« SHAREM

— Extend to three dimensions

— Extend to realistic bathymetry
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(B R0 Uncertainty in sound speed
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* Deviations about the mean profile need
higher order statistics - vertical correlations.

* Not knowing where the bottom of the mixed
layer 1s (given lack of measurements)
impacts planning.

e Impact of having some measurements, but

accounting for the effect of internal waves
In execution.

6/20/02 ONR Uncertainty Review



10

20 —

30

. Recommended SSP

ECS August measurements from
AXBT flight in support of tactical

exercise

6/20/02

60

70

80

90

100

"7 MODAS

120

130

140

150

10

12

ONR

14

ncertai ty Review

16

18

26

28

30



Levitus along 124.5E

T profiles ECS1at 27N, 124.5E
taugno.grf
MODAS at 27N, 124.5E 6/14/02
0 28.51t025.5
” ] 7
40 5
7
_ S
. ///
_ —
80
=
r= \/
Q. 5
g 7
180 i
200
220
240
260 ]
i Temperature
280 ]
e 1 L L
10 12 1 16 18 20 22 24 26 28
Temperature
6/20/02

30

S profiles <©  MODASat27N, 124.5 saugno.gi
TR

g ~

o \ e
120 — X’ \
140 — \ &\\
160 — \>w
o ]
e ]
= [1]]
240 / / /
260 1M1 : //
] Salinity /]
300 T 1 T | 1 ' ///'

Levitus along 124.5E
ECS1 at 27N, 124.5E

33.4

33.6

ONR Uncertainty Review

Salinity

34.8



o

E! i

S o™
£ - o
ence & Techn\ g

. Adding internal waves into
sound speed field

* Goal: determine how internal wave uncertainty correlates
to environmental acoustic uncertainty

« Estimate average NV (vertical density gradient) and its
uncertainty from the MODAS and/or dynamic model T

and S fields.

— Note: depth dependence of N(z) determines the vertical structure
(vertical mode shapes), and magnitude of N determines the energy
level and frequency range

— Average N(z)
* Initially assume horizontally uniform
» Use MODAS and/or dynamic model mean T&S

— Uncertainty in N(z)
» Estimate uncertainty in both magnitude and depth dependence
» Use MODAS and/or dynamic model to estimate statistics of T&S and
mixed layer depth

» Estimate uncertainty by having assumed horizontal uniformity
6/20/02 ONR Uncertainty Review




RAM Internal Wave field

East China Sea
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5, Combined IW simulation
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* Next: determine how internal wave uncertainty
correlates to environmental acoustic uncertainty

— Parametric study of the impact of internal wave
fluctuations on signal and information processing.

» Use Garrett-Munk internal wave spectrum with modified
parameters (1.€., energy, coherence).
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Target state estimation

METOC | .| MODAS/Dynamic
data inputs

dol Visualization of Battlefield
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ARL:UT / Metron
Flow Chart

APL/UW
Modeling
» Modify Data .
y Echo Tracker Classifier (ETC)
Beamforming ,| Replica Corr, ,| Fine Bearing ,| Cluster/Feature
Normalization Estimation Extraction
Metron Metron
» Time Series-Based Cluster-Based
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Amplitude (dB)
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Varnability of
Normalized Data

Even with 2 dB difference internal waves are important

Amplitude (dB)
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| : ' [Likelihood Ratio Tracker

« LRT is a discrete non-linear Bayesian track-before-
detect system for processing sensor responses to
determine the presence and state of a target

« Using likelthood functions to represent sensor
information LRT integrates these responses over time
and space to increase detection probability without
increasing false alarm rate

« LRT is capable of tracking multiple (non-overlapping)
targets
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Target State Estimation

Beamformed Data

6/20/02 Replacs:ment for
Normalized MFO




(5  Log-Likelihood Ratio

\-."d
2 Crice & Tochn' g

L(r|s)= log( prob. of 7(¢) given a target in state s j

prob. of () given no target 1s present

Target Model.: r(t) =a(s) E(t —1(s)) + R(¢) n(?) \
Non-Target Model: "1 = R(1) n(?) T

Gaussian

L(r|s) = g j \r(z)\Z/R(z)zdt - g j \r(r)—a(s)f(z—r(s))\z/R(t)zdz
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Uncertainty in Range
Estimation
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005500  LRT Past/Future Work

* Worked with ARL/UT to develop models for calculating
measurement Log Likelihood Ratios (LLRs) for Echo
Tracker Classifier (ETC)

— Noise limited case
— Reverberation limited case

* Compare time series-based LLR to matched filter
approximation using simulated data

* Design an LRT to use the likelihood functions

— Add another state variable - error in mean sound speed

* Develop methods of calculating and displaying the effect
of uncertainty in sound speed on the estimate of target state
produced by the LRT
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@ - EXAMPLE OF DETECTION and a
“Cmans® VISUALIZATION METHOD

Color and Text — based
method for target detection

—390% chance - sub
— 60% chance - sub

Visualization Showing Regions Where Visualizations Taking into Account
There is Likely to be a Target Uncertainty Representations —
Might not want to use this since it was Text and color used to discriminate a target’s
derived from the IMAT image. detection with different degrees of
uncertainty (one has a 60% chance it is there,

The image on the right is derived from the

0
ECS bathymetry and images of subs. the other, 90%).
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Blurring for target detection

Blurred-Model Representation

Could be used for
detection with more
blurring representing

more uncertainty
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Transparency for target
detection

100% chance here

75% chance here

50% chance here
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Accomplishments

Focused on specific tactical exercises in the East China Sea

Characterization of environmental uncertainty
— Prototype characterization of water column including internal waves from

MODAS fields

— Preliminary simulations in East China Sea using NCOM nowcasting/forecasting
system

— Prototype characterization of the bottom
— Sensitivity of bottom acoustics to bottom parameters
Acoustic Propagation

— Used sound speed fields from combined MODAS and internal waves to generate
TL and reverberation

— Compared statistics of RAM vs CASS TL from realizations of internal waves
Signal and information processing

— Initial results show impact of internal waves on acoustic processing

— Initial formulation for LRT

Visualization
— Initial displays of uncertainty of the bottom
— Combined displays of geologic characteristics and bottom uncertainty
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6% Future Work

Characterization of environmental uncertainty
— MODAS vertical profile evaluation

— Improve ocean model accuracy and resolution
* Extend non-hydrostatic to 3-D and realistic bathymetry in ECS

— Introduce bottom clutter and study its effect on uncertainty and performance.
— Compare predictions based on Sharem 134 and 138 environmental measurements.

Acoustic Propagation

— Internal waves sensitivity of statistics and signal and information processing
* Increase amplitude
* Mixed layer depth

— Nonlinear internal wave packets acoustic propagation uncertainty

— Use bottom uncertainty in acoustic propagation to generate acoustic model output pdfs
Signal and information processing

— Process beam-level data modified by model predictions, evaluate effect on performance

— ARL/UT and Metron to work jointly on a simulation to investigate
* Matched Filter approximation to LLR for ETC
» Effect of SSP errors on range estimation

— Metron to demonstrate effect of SSP errors on LRT state estimation

Visualization
— Develop effective visual techniques that usable and useful
— Incorporate the LRT outputs into a visualization
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Summary

* 6.2 team 1s exploring characterization and
application of uncertainty

— Common geographical area

 Area characterization leverages a number of programs and data
sets

— End-to-end process with tactical implications
 Signal processing
* Tracking
* Visualization

» Strong integration among disciplines
 Work 1n progress..........
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