Computational Modeling of Cognitive Processes in Plan Authoring

J. William Murdock & David W. Aha

Navy Center for Applied Research in Artificial Intelligence

Naval Research Laboratory, Code 5515

Washington, DC 20375

surname@aic.nrl.navy.mil
Abstract

An intelligent system should be able to reason about a human user’s decision-making processes so as to suggest alternative processes that can be used to help them accomplish their goal(s). For example, a mixed-initiative plan authoring tool (e.g., HICAP [1]) could be augmented to recognize a user’s goals, analyze how their approach addresses their goals, and provide suggestions that are consistent with both these goals and their approach. This could be valuable when the user has a “big picture” understanding of how to meet their goals, and seeks software assistance to supply details as needed (e.g., via inferencing and information gathering activities). This requires the system to understand the approach the user is taking in order to assist with that approach. Decision-making processes can be modeled using the TMK (Task-Method-Knowledge) modeling paradigm, which provides an integrated framework for modeling tasks/goals and methods/approaches. Existing work on TMK models (e.g., REM [2]) has shown that they can enable a system to reason about itself to develop new capabilities. In this work, our focus is on constructing TMK models for supporting the user in the context of decision-making processes such as plan authoring, and using those models to enable tools to not merely work for the user but rather work with the user.

1) Introduction

One form of collaboration between a human and an intelligent software system involves the human deciding to accept or reject system-provided recommendations. This type of collaboration is particularly useful for environments where a decision depends on a wide variety of factors, and only some can be explicitly presented to the system. For example, a meeting scheduling system may have explicit information on schedules and constraints for a group of people who want to meet. This information can allow the system to make recommendations (e.g., selecting a meeting’s time). The user is likely to have additional background knowledge (e.g., soft constraints, flexible schedules) that may lead the user to override the system’s recommendations. Some meeting scheduling systems use machine learning techniques to improve the quality of their recommendations over time by recording the user’s responses to the system’s recommendations, effectively developing a model of the user’s background knowledge [3] [4].

Combining automatically generated recommendations with human supervision seems appropriate to several types of problems. These include plan authoring problems, which provide many challenges that are not present in meeting scheduling. In particular, plans involve many interconnected steps, and decisions made early in a planning process interact strongly with later decisions. If an intelligent system is to assist a planning session, it should know the goal that the plan is intended to accomplish. That goal can be explicitly stated by the user; alternatively, the user can simply start creating steps in the plan and rely on the system to infer the overall goal, as in [5]. In either case, once the system has a goal, it can engage in a reasoning process (e.g., search, case-based reasoning) to compute steps that move the process closer to the goal. It can then use these computed steps as recommendations, which the user can accept or reject.

However, in many planning domains simply recognizing the user’s goal may not suffice to provide effective assistance. For example, when using a mixed-initiative planning tool, a user often has information or capabilities that are relevant to plan development but are not available to the computer. If the computer did consistently have all of the information and processing ability required to develop an ideal plan, then a fully automated planner might suffice. Consequently, it is reasonable to assume that the user is more competent than the software tool at developing the plan. In these situations, it is inappropriate for the program to identify the user’s goal and then to use its own information and processing to compute the best actions to accomplish that goal. Instead, the program should try to understand how the user is addressing the goal and to recommend actions that are consistent with the user’s approach. This requires the program to reason about both the user’s goals and the user’s cognitive processes. For example, a user developing a logistics plan may choose a specific vehicle to move some items. Even if that choice seems suboptimal to the program, it should recognize that this decision has been made, and its recommendations should be consistent with that decision. This example is detailed in Section 2.
To reason about a human user’s cognition, a program must be able to representation it. The Task-Method-Knowledge (TMK) framework has been used to model a wide variety of reasoning processes [2], including human cognition [6]. However, TMK has not been used by an intelligent system to model a user’s reasoning processes. Nonetheless, because TMK supports both automated meta-reasoning and cognitive modeling, we believe that it is a good initial representation for supporting automated reasoning about a user’s cognition, although we may later find that TMK must be augmented to enable this reasoning

Figure 1 depicts a general architecture for plan authoring based on TMK models of user cognition. After the user enters some actions, the authoring tool then uses the TMK model to interpret the user’s goals. The interpretation and inferred goal are both used to form predictions about the user’s future actions. The inferred goal is also used by a traditional (automated) planning system to select potential future actions. Next, a filter removes potential future actions that are inconsistent with the model’s predictions of what the user will do. The actions accepted by this filter are presented to the user as recommendations. The user can either accept one of those recommendations or enter some other action. In either case, the next user response is again interpreted via the model and new recommendations are formed.

[image: image1.emf]…

UserUser

Trucks,

Boxes,

Locations

Construct

Shipping Plan

Linear

Deliberation

…

Decide on

Vehicle

…

Input Load

Action

…

TMK Model of User

Plan Authoring Tool

locations

Load

Automated Planner

times

Drive

Load(Box1,

Truck1)

Load(Box2,

Truck1)

Drive(Truck1,

Factory, p1)

Interpretation:

Decided on

Truck1

TMK

Prediction

Filtering

Recommendations

Goal: boxes at store

TMK

Analysis

Input Drive

Action

Input Drive

Action

Unload(Box1,

Truck1)

Drive(Truck1,

Factory, p1)

[image: image2.emf]User

KnowledgeTask

MethodMethodMethod

Task

TaskTaskTask

…

TMK Model of User

Plan Authoring Tool

Fact

Operator

Automated Planner

Fact

Operator

…

Action

Recommendation

Interpretation

of user’s

reasoning

Expected

actions

TMK

Prediction

Filtering

Recommendations

Potential Actions

Inferred Goal

TMK

Analysis

…

Action

UserUser

KnowledgeTask

MethodMethodMethod

Task

TaskTaskTask

…

TMK Model of User

KnowledgeTask

MethodMethodMethod

Task

TaskTaskTask

…

TMK Model of User

Plan Authoring Tool

Fact

Operator

Automated Planner

Fact

Operator

…

Action

Recommendation

Interpretation

of user’s

reasoning

Expected

actions

TMK

Prediction

Filtering

Recommendations

Potential Actions

Inferred Goal

TMK

Analysis

…

Action

2) Illustrative Example

Table 1 displays a formal description of a simple, artificial logistics scenario that concisely illustrates the main ideas of this research. (In Section 3 we identify the kinds of real-world domains for which this work is applicable.) In this scenario, three operators are available: loading items onto a vehicle, moving a vehicle, and unloading objects off of a vehicle. These operators can take different amounts of time to execute depending on which arguments they receive. In particular, any movement of truck1 takes three times as long as the same movement of truck2. In addition, both trucks, as well as two packages, are at a location called factory.

	Operators
	Execution Times
	Initial State

	operator load (?object, ?vehicle)
	load(box1,truck1)=1
	location(box1,factory)

	 precondition:
	load(box1,truck2)=1
	location(box2,factory)

	 location(?object) = location(?vehicle)
	load(box2,truck1)=1
	location(truck1,factory)

	 postcondition:
	load(box2,truck2)=1
	location(truck2,factory)

	 on(?object, ?vehicle) and
	unload(box1,truck1)=1
	

	 not (location(?object) = location(?vehicle))
	unload(box1,truck2)=1
	

	operator move (?vehicle, ?startingPt, ?destination)
	unload(box1,truck1)=1
	

	 precondition:
	unload(box2,truck2)=1
	

	 location(?vehicle, ?startingPt)
	move(truck1,factory,p1)=15
	

	 postcondition:
	move(truck2,factory,p1)=5
	

	 location(?vehicle, ?destination) and
	move(truck1,p1,p2)=15
	

	 not location(?vehicle, ?startingPt)
	move(truck2,p1,p2)=5
	

	operator unload (?object, ?vehicle)
	move(truck1,p2,p3)=15
	

	 precondition:
	move(truck2,p2,p3)=5
	

	 on(?object, ?vehicle)
	move(truck1,p3,store)=15
	

	 postcondition:
	move(truck2,p3,store)=5
	

	 location(?object) = location(?vehicle) and
	
	

	 not on(?object, ?vehicle)
	
	

[image: image3.emf]…

Trucks,

Boxes,

Locations

Construct

Shipping Plan

Linear

Deliberation

…

Decide on

Vehicle

…

Input Load

Action

…

TMK Model of User

Plan Authoring Tool

locations

Load

Automated Planner

times

Drive

Interpretation:

Decided on

Truck1

TMK

Prediction

Filtering

Recommendations

Goal: boxes at store

TMK

Analysis

Input Drive

Action

Input Drive

Action

Unload(Box1,

Truck1)

Drive(Truck1,

Factory, p1)

UserUser

Load(Box1,

Truck1)

Drive(Truck1,

Factory, p1)

…

Load(Box2,

Truck1)

Consider the following example involving this scenario. Suppose a user begins to develop a plan and the plan authoring tool has been given the information displayed in Table 1.
 The first step that the user takes is to specify load(box1,truck1) and load(box2,truck1) at the start of the plan. At this point, a goal recognizer may infer that the plan’s goal is to move the two boxes to the store. This inference could come from declarative knowledge (e.g., that loading boxes are typically shipped from factories to stores) or from experience (e.g., from one or more past planning cases involving moving boxes). After the goal is recognized, a traditional planning system could begin generating a plan that starts with the two given actions and achieves the desired goal. There are two such plans which are obvious. The first involves driving truck1 with the boxes on it from factory to p1 to p2 to p3 to store, and then unloading the boxes at store. The total time that this plan would take is 15+15+15+15+1+1=62. The second obvious plan involves unloading both of the boxes, loading both of them onto truck2, and driving that truck along the same route, which yields a total time of 1+1+1+1+5+5+5+5+1+1=26. The planning system could compare these and other total times and conclude that the latter plan was the shortest. It would then recommend to the user that the next action be to unload a box from truck1 (and then unload the other box, move them onto truck2, etc.). However, this recommendation is not what the user had in mind; the user loaded the boxes onto truck1 in order to ship them with that truck.

There are many reasons why the user might want to use the slower truck (e.g., it might be more reliable, cheaper to operate, or produce less pollution), and these factors may outweigh the desire to move the boxes to the destination quickly. The shipment’s low priority level could explain why the user is indifferent as to which truck to use. Also, the user may anticipate future, higher-priority demands that will require the faster truck. Some of these concerns are quantifiable, and could be addressed by an automated planning system. However, some of these concerns involve subjective value judgments for which prior quantification may not be possible. In this example, the planning system is not able to compute that the slower truck should be used either because it lacks data about costs and benefits (e.g., leaving the faster truck available for subsequent, expected assignments) or because this computation is completely outside of its competence. In either case, the system should recognize that the human has decided to use truck1 and make recommendations that are consistent with this approach, even though it does not know why this truck was chosen. Figure 2 shows the operation of our plan authoring architecture in this example.

The fact that the plan authoring tool makes a poor recommendation in this situation is not necessarily a major flaw; a mixed-initiative planning tool will make some bad suggestions (hence the involvement of the user). However, this example illustrates an additional failing. The user will override the system’s
 suggestion and instead assert that the plan’s next step should be to move truck1 from factory to p1. At this point, the planning system can again compute the costs for various possible plans and develop a new recommendation. In this case, continuing forward with the shipment using truck1 would involve three more movements and then unloading for a total time of 15+15+15+1+1=47. In contrast, returning to the factory in truck1, unloading and reloading onto truck2, driving truck2 to the store, and then unloading from truck2 would cost 15+1+1+1+1+5+5+5+5+1+1=41. Thus a traditional planning system would recommend that the next action be to drive truck1 back to factory. Thus, the planning tool could repeatedly make bad recommendations that the user must override while defining a plan that differs from the system’s choice. This is a major flaw; it is acceptable for the planning system to occasionally need overriding, but the planning tool should not consistently produce bad results when the user’s intentions are increasingly obvious. We address this research challenge.

As stated in Section 1, this project takes the TMK modeling framework as its initial hypothesis for representing human cognition. In the example, our system requires a model of how a human uses the plan authoring tool in this domain. A TMK model is divided into three components: (1) tasks, (2) methods, and (3) knowledge. The tasks in this example include both reasoning tasks (e.g., deciding on a vehicle to do the shipping) and action tasks (e.g., telling the planning tool to load an object onto a vehicle). The planning tool will observe some or all of the action tasks, and will need to infer what reasoning tasks were being performed (and what knowledge items were being produced by those reasoning tasks). In the example, the system will need to infer, from observing the user loading boxes onto truck1, that the user had earlier chosen a vehicle for shipping and that this task had produced a knowledge item indicating that truck1 was to be used. The primary support for inferring the reasoning tasks and knowledge from observed tasks are the methods of the TMK model, which describe how the model’s higher-level tasks are decomposed into lower-level tasks. In the example, there will be a method for the overall task of constructing a shipping plan; this method will involve both selecting a vehicle and entering actions involving it. This method will also indicate the flow of knowledge among the tasks (e.g., stating how the selected vehicle is used in the plan). This information will allow the system to backtrack through the method to infer that the user had earlier decided to ship the boxes using truck1. The system will then able to look ahead in the method to estimate what the user is likely to want to do next (e.g., enter actions for moving the truck). Thus the system will make recommendations that are consistent with what it expects the user to do next. The tasks in the TMK model describe what the user is doing, while the methods describe how the user is doing these things. Combined, these two provide a basis for the system to generate recommendations that are compatible with both what and how the user is thinking.

3) Applicability

As suggested by the example in Section 2, this approach is applicable to domains in which numerous interrelated actions are required to accomplish a specific goal. In particular, the approach seems particularly valuable in data-intensive environments (thus enabling the computer to make a significant contribution) that also involve several important decisions requiring additional background knowledge and/or subjective judgments. Many military and non-military domains have this characteristic. The Noncombatant Evacuation Operation (NEO) planning domain addressed using HICAP [1] is one area where our approach seems particularly relevant. In that domain, the overall goal of performing an evacuation needs to be addressed by many different activities that can be further decomposed into an even greater number of actions. There is a large amount of precise, explicit information such as doctrine, SOPs, and records of past NEOs. However, a human must have final authority over decisions. In addition, because much reasoning in this domain involves multiple levels of abstraction, as represented by the task hierarchies in HICAP, additional opportunities for collaboration between the user and the planning tool are possible. For example, the user’s decisions regarding task decompositions at a relatively high level of abstraction may help the system to infer the abstract reasoning process that the user is taking; this inference can then provide leverage when reasoning about the user’s reasoning process at a more concrete level. HICAP’s application to NEO planning has shown that an intelligent decision support system can provide useful results within this domain. We expect that adding capabilities for representing and reasoning about the user’s cognitive processes can support even more effective collaboration.

There are also many domains where our approach does not appear to be directly applicable. The meeting scheduling domain mentioned in Section 1 involves producing very small individual results. In this domain, it seems unlikely that there would be enough information available to the system to infer anything useful about the human's underlying reasoning process. In contrast, the development of a NEO plan is sufficiently complex that, even at a relatively early stage in the process, there is considerable evidence available to infer the user’s goals and approach. Furthermore, our approach is obviously not useful for problems that are easily and adequately addressed automatically, or for which no existing system can provide meaningful assistance. Instead, our approach is specifically intended for situations in which the human and the program can both play a substantial role. In addition, this approach seems poorly suited to supporting planning by individuals with very little domain expertise; the notion of having a system act in a way that is consistent with how the user is trying to solve the problem is counterproductive in circumstances in which the user is likely to be solving the problem in an ineffective manner. This project focuses exclusively on a specific combination of roles between the user and the system, i.e., the user authors the plan and the system offers suggestions. Many other varieties of collaboration between humans and software systems have been identified [8]. For example, in some situations it is useful for a system to act as a peer, or a teacher. In future work, we may wish to consider whether TMK models are also appropriate for modeling users in support of these other types of interactions, e.g., to automatically identify situations in which the human does not have adequate expertise to take a leading role in plan authoring. It may also be productive to study whether the representations used here for collaboration between a human and a computer can also be useful for facilitating social interactions among groups of humans; since the models described here allow a computer to understand a human user, it is conceivable that similar models could help humans better understand each other. As this work matures, we expect that experimental evidence will allow more concrete and detailed claims about the applicability of our approach.

4) Open Issues

Our research on this project is at a very early stage, and thus there are many theoretical issues that are still unresolved. We have a preliminary hypothesis that TMK is suited to representing the cognition of a user in a way that enables automated reasoning about how to make recommendations that are consistent with that cognition. A key open issue is the validity of this hypothesis; additional information beyond what can be encoded in TMK may be needed for reasoning of this sort. More challenging is the issue of model acquisition. Someone who builds or configures the plan authoring tool might provide TMK models for the cognition of typical users in a variety of tasks, perhaps basing these models on other existing formal models of cognition such as the ones employed in [9]. However, this approach could place an unreasonable demand on the person who has to build these models. Furthermore, this approach is not useful if the tool is used by an atypical user or on an unknown task. Alternatively, the tool could construct all of the models itself from observations. However, it is not clear how a tool might derive inferences about the internal knowledge and reasoning of a human without any prior information on the subject. We expect that some hybrid of these two approaches to providing models will be superior to either one in isolation (i.e., some models of cognition are provided by us as we develop the tool, and we also give the tool some ability to adapt these models through observations to suit different tasks and users).

Another open question is whether the information that can be observed from ordinary user actions is sufficient to determine what portion of the model those actions correspond to, even when the model is correct and available. We expect that, in most planning domains, this will be feasible for a plan authoring tool because plans are relatively powerful and complex information structures; when a user enters even a portion of a plan, the authoring tool has a relatively strong basis for deriving inferences about the user. However, it is possible that some domains may demand additional user input for a system to be able to reason about the user’s cognition. For example, the kinds of coordinating representations used in [10] for enabling cooperation among human users may also be applicable to supporting cooperation between an intelligent system and a human user.

As work on this project continues, we also expect to encounter additional open issues. Supporting human decision making in the context of plan authoring is a very large area of research. We believe that using cognitive models to enable authoring tools to reason about their users can provide a substantial advantage in making recommendations that are consistent with both the goals and the approach of the user.

References

[1] Muñoz-Avila, H., Aha, D.W., Breslow, L.A., & Nau, D. (1999). HICAP: An interactive case-based planning architecture and its application to NEOs. Proceedings of the Eleventh Innovative Applications of Artificial Intelligence Conference. (pp. 870-875). Orlando, FL: AAAI Press.

[2] Murdock, J.W. & Goel, A.K. (2001). Meta-case-based reasoning: Using functional models to adapt case-based systems. Proceedings of the Fourth International Conference on Case-Based Reasoning (pp. 407-421). Vancouver, Canada: Springer.

[3] Dent, L., Boticario, J., Mitchell, T., Sabowski, D., & McDermott, J. (1992). A personal learning apprentice. Proceedings of the Tenth National Conference on Artificial Intelligence (pp. 96-103). San Jose, CA: MIT Press.

[4] Murdock, J.W. & Goel, A.K (2001). Learning about constraints by reflection. Proceedings of the Fourteenth Canadian Conference on Artificial Intelligence, Ottawa, Ontario: Springer.

[5] Lesh, N. & Etzioni, L. (1995). A sound and fast goal recognizer. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (pp. 1704-1710). Montreal, Quebec: Morgan Kaufmann.

[6] Griffith, T.W. & Murdock, J.W. (1998). The role of reflection in scientific exploration. Proceedings of the Twentieth Annual Conference of the Cognitive Science Society (pp. 448-453). Madison, WI: Lawrence Erlbaum.

[7] Hendler, J. (2001). Agents and the semantic web. IEEE Intelligent Systems, 16:2, 30-37.

[8] Madni, A. & Lin, W. (2001). Human-agent collaboration architecture. Presented at the Review of Human Factors Discovery and Invention Projects, Code 342, Cognitive and Neural Sciences, Office of Naval Research. Arlington, VA.

[9] Lange, D. (2001). A generative decision support architecture (GDSA). Presented at the Review of Human Factors Discovery and Invention Projects, Code 342, Cognitive and Neural Sciences, Office of Naval Research. Arlington, VA.

[10] Alterman, R., Feinman, A., Introne, J., & Landsman, S. (2001). Coordinating representations in computer-mediated joint activities. Proceedings of Twenty-third Annual Conference of the Cognitive Science Society. Edinburgh, Scotland: Lawrence Erlbaum.

Figure � SEQ Figure * ARABIC �1�: Architecture for plan authoring with cognitive models.

Table � SEQ Table * ARABIC �12�: A simple artificial logistics planning scenario.

Figure 2: The plan authoring architecture applied to the logistics scenario.

Figure � SEQ Figure * ARABIC �2�: The plan authoring architecture applied to the logistics scenario.

� There are many ways that this information could have been encoded. For example, some information may have been supplied by the user, while other information may have come from the tool’s programmer, and still other information could be obtained automatically from remote sources using an interoperability framework (e.g., DAML [7]).

