Autonomous Aerial Cargo/Utility System (AACUS) INP

Dr. M.L. Cummings
Code 35
Need: USMC Cargo UAS to rapidly support distributed forces, as an alternative to convoys, manned aircraft and air drops in all-weather, possibly hostile conditions.

Goal: Autonomous approaches & landings for unprepared landing sites, supervised by field operators with no special training, & integration across a variety of unmanned rotorcraft.

Challenges:
- Unprepared landing site selection and execution
- Dynamic contingency replanning until the point of landing
- A supervisory control system that any USMC personnel can operate
- Cultural attitudes
- Industry proprietary SW architecture

Proposed Deliverables
- Compact, modular low cost sensor suite
- Precision ops with no specially trained operator to include obstacle avoidance and unprepared site landings & recovery in DVE/ GPS denied settings
- Reliable critical cargo delivery
 - Long term focus on CASEVAC missions
- Flight demonstrations
Key AACUS Discriminators

• AACUS focuses on landing site selection AND real-time execution
 • Global (mission-centered) vs. local (vehicle-centered) control
 • Dynamic threat response and contingency planning

• ICUAS is a near-term logistics program, focused on prepared site landing with trained UAV operators.
 • Internal vs. sling load capacity

• MRMP/MRMUAS/Firescout are ISR programs
 • AACUS could complement these programs as well as manned platforms

• CASEVAC missions
 • Cargo missions more near term, medical missions more long term
 • Represent a major leap in trust and acceptance
 • Could potentially transform civilian applications

• Field personnel should be able to operate with no special training
 • Call for support under duress
 • Medics on board as a future option
• Mission-centered Global Open Architecture Layer (GOAL) vs. local flight control algorithms
 - Open architecture vs. proprietary
 - The fallacy of plug and play
 - Feed forward vs. feed back of sensed data
 - The cost-benefit analysis deliverable
The Tentative Plan

• Industry workshop
 • Goal is for industry, academia, and government labs & centers (UAV & UGV, platform & sensor) to understand the capabilities of one another
 • Establishing basis for team formations for potential BAA release
 • Team composition
 • Single vs. multiple awards
 • Questions today and tomorrow
 • More questions until 23 NOV
 • Updated CONOPS to be posted soon

• ~ 1 DEC BAA release
 • Two unique VTOL platforms with a common sensor package and three human-vehicle interfaces, using an open architecture framework
 • Must demonstrate portability across both platforms
 • Unmanned vs. optionally manned platform
 • Important Dates
 • 13 JAN 2012 BAA deadline
 • late FEB Source selection
 • APR 2012: Contracts issued pending signing of appropriation bill
Programmatics

• Initial contract expected to be for two years, with three option periods that align with Demos 2, 3 & 4
• Budget of ~$5M for the first fiscal year, and ~$13M per follow-on years
• STTR/SBIR future possibilities

• Transition opportunities at major milestones
 • To other UAS programs as well as manned programs
 • Commercial and other government agencies

<table>
<thead>
<tr>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Award</td>
<td>System Critical Design Review</td>
<td>Demo 1</td>
<td>Demo 2</td>
<td>Demo 3</td>
<td>Demo 4</td>
</tr>
</tbody>
</table>

• Final Review

● = Annual Reviews
Questions?