Data Focused Naval Tactical Cloud (DF-NTC)

ONR Information Package

June 24, 2014
ONR Information Package Components

<table>
<thead>
<tr>
<th>Part #1</th>
<th>DF-NTC EC Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part #2</td>
<td>NTC Overview</td>
</tr>
<tr>
<td>Part #3</td>
<td>Developing on the NTC Platform</td>
</tr>
<tr>
<td>Part #4</td>
<td>Data Science Thrust</td>
</tr>
<tr>
<td>Part #5</td>
<td>Data Ingest and Indexing Thrust</td>
</tr>
<tr>
<td>Part #6</td>
<td>Analytic Thrust / ASW</td>
</tr>
<tr>
<td>Part #7</td>
<td>Analytic Thrust / IAMD</td>
</tr>
<tr>
<td>Part #8</td>
<td>Security Thrust</td>
</tr>
</tbody>
</table>

Part #1

DF-NTC EC Overview
DF-NTC Enabling Capability

- Data-driven decision support shaped by commander’s intent, historical decisions/results, COA/ECOA...
- Advanced analytics to support effective/rapid planning, assessment & execution
 - ASW
 - IAMD
 - EXW
- Autonomous predictive SA across warfare domains
- Adaptive fleet-wide data sharing in DIL environment
- Data protection and security mechanisms to ensure the integrity of data
- Automated data security tagging at ingest
S&T Objectives

• Develop efficient, effective ingestion capabilities for ASW, IAMD, & EXW data in support of broad Naval needs
 • NTM, acoustic, radar, EO/IR, ESM, METOC . . .
• Develop efficient analytic techniques & algorithms that extract critical, mission-focused, insight & present timely I&W from volumes of disparate ingested data
• Develop widgets & applications for cloud environment that provide enhanced C2 capabilities
 ▪ Electronic representation Naval Plans
 ▪ Automated assessment of operational impacts to Naval Plans
 ▪ Automated planning & re-planning aligned with Commander’s Intent

Warfighting Payoff

• Ability for Naval Warfare Area commanders to more effectively & rapidly plan, assess & execute operations by employing advanced analytics that leverage cross-Warfare data

Co-evolution of CONOPS/TTPs with Data & Analytics S&T Products
Part #2

NTC Overview
Cloud Computing Context

IT Efficiency Clouds

Purpose: Consolidate enterprise computing for cost savings

- Located at Large Data Centers
- Supports 10,000s of customers
- Operates on high bandwidth networks

Naval Tactical Cloud (NTC)

Purpose: Improve warfighting effectiveness while operating inside adversary kill chains

- Cloud located at the tactical edge supporting real-time mission planning and execution
- Applications automate diverse sensor and data assimilation
- Operates on tactical RF networks

IT Efficiency Clouds are mature and can make the Navy IT infrastructure more cost effective

Tactical Clouds are emerging and have the potential to radically improve Navy combat effectiveness
ONR Enabling Technologies for NTC

NTC RI Platform
- Massive Storage & Compute Platform Core & Common Services
- Highly Tailorable, Quickly Developed Apps & Widgets
- High Performance, Cross-Domain Gateways

SAVA
- All Source, Big Data UCD Framework
- High Performance Data Analytics/Predictive Analysis

UGW/PUMP II
- Dynamic Federation & Discovery Services for D-DIL

ACCUMULO
- SIGINT
- Imagery/FMV
- METOC
- Readiness
- Plans & Tasks
- ...
Harnessing the Complete Naval “Data Space”

Extend to Force Level
- More powerful computation enables greater span of C2 optimization
- Extend from today’s Unit level optimization to **Group and Force** level optimization

Extend to Historical Data
- Enhanced storage enables much greater data storage afloat
- Extend from today’s Current data set to store **Historical** data sets afloat

Extend to Predictive Data
- More powerful analytics enable generation of Predictive (Future) data
- Extend from today’s Current data to store **Predictive** data sets afloat

Naval “Data Space”

Force

Group

Unit

Historical Data

Current Data

Predictive (Future) Data

Expand Naval “Data Space” with NTC

Scope of Naval “Data Space” as it is today
Data Science Methodology

Operational SME

Operational Use Cases

What are the operational use cases that you want to address?

Analytic Capabilities

What are the analytic capabilities that need to be developed to support the use case?

Entity Models

What are the entities that you need to define to support your analytic questions?

DF-NTC

Analytic Development

What analytics algorithms are required to extract the information needed to provide the analytic capabilities?

Data Sources and Ingest

What data sources need to be ingested and how do they need to be indexed?

NTC

Computer Science Implementation

How is everything to be implemented on top of the cloud software platform?
NTC Enabling Tactical Joint Warfighting Data Interoperability

Seamless Warfighting Data Interoperability Ashore/Afloat
Part #3

Developing on the NTC Platform
What is NTC?

• **NTC is an implementation of a Big Data analytic cloud environment.**

 - “Cloud” is a heavily overloaded term. In this context, cloud is **not** about:
 - Offsite data storage, though remote storage and access to data may occur
 - Virtualization, though all or part of the architecture may be virtualized
 - Application hosting, though NTC will host and support client applications

 - “Cloud” is **about:**
 - Providing the means to store and access massive amounts of data
 - Providing the means to host data from multiple disparate sources in a common environment
 - Providing the tools to extract meaning from and enrich data on a massive scale, including correlation of data from multiple domains

• **NTC is designed to operate at the tactical edge.**

 - NTC is intended to provide the means to take the tools that were previously available only to shore-based operators and at the national level, and to make them available to the forward-deployed warfighter

 - NTC is designed to support data collection, analysis, and presentation capabilities, even in the absence of robust connectivity to resources ashore.

• **In Short: NTC is a set of services focused on providing an end-to-end ecosystem for ingesting, storing, processing, and accessing data from multiple and possibly disparate sources – in a package suitable for deployment to the tactical edge.**
NTC provides support for several means of delivering data to the system edge. The most common anticipated use case is streaming delivery via common messaging capabilities. Currently, NTC supports ingest via AMQP and Apache Kafka message topics. NTC also currently includes Niagara Files for fetching data from file system locations and preprocessing for delivery into the ingest pipeline.

Streaming media ingest and segmentation (for example: FMV) is under current exploration with an anticipated initial capability availability in summer of 2014.
NTC provides a generic ingest capability based on Apache Storm. Built-in bolts and spouts are provided for reading data from AMQP and Kafka messaging topics and for transforming data from source format into the NTC format and for relating data to ideas and concepts within one or more knowledge domains.
NTC leverages deployable models to:

1. Define the structure of and relationships between data within the NTC ecosystem; and
2. Provide instructions to the ingest framework on how data should be mapped and transformed from source format to domain entities.

These models are deployed as XML artifacts and libraries for easy runtime deployment and expansion.
NTC provides for several integration points within its ingest framework. One such integration point is a messaging topic or set of topics that presents the ingested data to subscribers as it is represented in the cloud data format and its position within the data store (e.g. key or row ID) has been determined.

Indexing and other analytic topologies subscribe to these integration topics to perform tasks like indexing data for easy retrieval, correlating ingested data with data at rest in the system, recognizing and indexing geo-spatial features, or examining data for alertable events.
Underneath the covers, the cloud data model employed by NTC is currently implemented as a set of Accumulo tables and tablets; however, several convenient abstractions / APIs are provided to facilitate persistence and access to data within the store and there is no reason these APIs could not be readily implemented on top of another data storage capability supporting field or cell-level security.
NTC supports several APIs for data egress to clients / client applications, including SPARQL – a recognized W3C standard for querying data stored as RDF (Resource Description Framework) models, WMS – a recognized OGC standard for delivering geospatial data to mapping clients, GeoSPARQL (coming soon) – SPARQL with geospatial extensions, and, last, but not least, the UCD (Unified Cloud Data) framework / model APIs (thick and thin-client).
What is UCD?
How Does it Relate to NTC?

UCD may be thought of as a flexible model for decomposing and for providing a common representation of data entering the NTC ecosystem.

It should not be thought of as a semantic model — it doesn’t try to model the world; rather, it provides the tools we can use to model our own worlds and to relate our view of the world to other views.

The end-to-end UCD ecosystem provides tools for ingesting data, storing data, and searching for and retrieving data from the system.
What is UCD?
How Does it Relate to NTC?

Modeling Data in UCD:

Semantic models are stored as data, rather than defined by structure: In UCD, models can be thought of as relational, but they are not defined by database, table, or column structure. Several tables/types within the UCD model are dedicated to definition of semantic models for describing data. These entities include concepts, predicates, and related arguments. Within UCD, a concept can be thought of as a type definition. A concept represents an abstraction that can be applied across multiple items of concrete data. Examples of concepts might include things like person, vehicle, truck, aircraft, building, and so forth. Predicates represent verbs that may be applied to relate one instance of a concept to another, or, in the case of a model description, to relate one concept to another. Examples of predicates might include ideas like has, knows, buys, and so on. Predicates are binary: they take a subject argument and an object argument. Together the subject, predicate (verb), and object form a statement. An example of a concrete statement might be John knows Karl. An abstract statement defining a model relationship might go something like car (subject) has (predicate) engine (object).

Common models and model elements promote universal understanding: If concepts or predicate meanings are duplicated within multiple models, the capability to relate data across multiple models or analytics is adversely impacted. This can be mitigated somewhat by relating model concepts themselves with a predicate (something like: modelA.person=modelB.name=modelC.person), but at the cost of additional indirection within the data store, complicating queries and reducing performance. What is the significance of this? Model reuse may have a significant impact on performance and correctness. Fewer models means less indirection to get to the desired data. It also means less information that must be federated in order to promote understanding across platforms.

Artifacts may be thought of as source data (even if they are derived), terms and statements represent extraction/enrichment: What this means: Terms and statements can have meaning apart from the context of an artifact, but they may not be supportable without the source artifact. This raises the question of whether terms and statements should be federated apart from their source artifacts, or whether the source artifact should be federated whenever related extraction/enrichment products are moved. Since the meaning should be able to be derived from the extraction/enrichment products it would make sense to federate them separately, unless the source artifact is explicitly requested, wouldn't it?

The intent of UCD is to promote data fusion by breaking data down into its smallest common denominators to promote sharing across applications and analytics: The concepts that serve to make the big-table big-data infrastructure useful across a broad range of applications include extraction and enrichment.

Extraction occurs when an online or batch analytic breaks an artifact into its terms. An artifact represents some collection of data (typically one that has its own model outside the context of the cloud). An artifact may be a video clip (or metadata accompanying the clip), an XML message, a picture, a human-readable document, or other collection of data that is more complex than a single-term. A term represents the smallest meaningful unit of data that may be extracted from an artifact. A term is defined by its name or identification (sign) within the artifact, association with the artifact (including location), and association with a (model) concept. A term might identify James as a person, mentioned in Line 6 or 26 seconds into a given artifact.

Enrichment occurs when an analytic creates assertions about data found in artifacts. These assertions are stored as statements and may be supported by sentences. An example of a statement might be "Karl buys cocaine," where the predicate buys references a valid verb in some known mode (for example a model describing commerce). The statement has value in and of itself - all that is needed to preserve the information in the statement is the statement itself, including the terms, and the model explaining the terms' concept labels and the predicate (verb). A sentence entry may also be created to support the statement (the sentence may refer to a section of a written clip in which Karl is seen making the purchase).

Though Data Is Often Presented in Tabular Form, a Hierarchical View May Be a Better Approximation of Structure: In a BigTable application, the Row ID of an entry might better be thought of as a root ID of a tree. In tabular form the same row ID would be repeated for each column, or node in the tree. Hierarchical views of the UCD tables are presented below.
What is UCD?
How Does it Relate to NTC?

Artifacts
Meta-Data and Structured Data Extracted from and / or Relating to a Source Document or Message

Domain Models / Ontologies

Associations
How Nouns or Verbs Relate to Each Other

Concepts
Valid Nouns Within a Given Domain

Predicates
Valid Verbs Within a Given Domain

Semantic Enrichment

Terms
Instances of Concepts Extracted from Artifacts

Statements
Instances of Concepts Extracted from Artifacts

Objects
Instances of Concepts Extracted from Artifacts

Better Query Performance
Better Ingest Performance

Less
More
Do I Have to Use the UCD APIs In Order to Use UCD?

• No, NTC will provide several APIs to allow mission and other applications to interact with the data stored in the UCD store. In particular, the next release of NTC will provide limited support for ingest and retrieval of data in RDF formats. In particular:
 ➢ Ingest of TriG files
 ➢ Retrieval of data via SPARQL / RDF query API

• Because the underlying UCD structure provides support for representing data as SPO statements, the transition between UCD and RDF is a relatively natural one.

• As previously noted, NTCs geospatial components also provide support for retrieval of data by WMS-compliant clients.
How Do I Ingest Data Into the UCD Ecosystem?
How Do I Map Data Into the UCD Ecosystem?

• The DPF UCD Topology handles mapping of data from structured input documents to UCD entities

• The DPF UCD Topology provides a generic mediation and ingest capability for NTC
 ➢ The topology leverages models for instruction on mapping of data
 ➢ New models may be added at runtime to add support for new input sources
 ➢ Models are delivered in the form of XML documents and supporting libraries

• There are two types of models used for ingesting data into the NTC UCD storage framework
 ➢ The Domain Model represents the “target” representation for the data being ingested
 – The Domain Model represents a knowledge domain and provides a standardized way of representing data from multiple sources within that domain (similar to an OWL model / ontology)
 ➢ The Artifact Model provides the mapping instructions needed to extract and transform data from a source document or artifact and map it to concepts and structures described in one or more domain models
How Do I Map Data Into the UCD Ecosystem?

• Do I have to map my source data to rich entities (graph topology)?
 ➢ In short, no. It is possible to map a message or document type to an Artifact only. In this case:
 – Artifact meta-data (things like author, source, dates) are mapped to the Artifact meta-data fields, as normal
 – Artifact data (content) are mapped to the Unstructured Text or Structured Data section of the Artifact
 ➢ When would I want to map data to structured Artifact data?
 – When high-speed, high-volume ingest is essential (there are tradeoffs)
 – When semantic enrichment is non-essential or can be performed after the fact
Ingest Take-Aways

- The Domain Model(s) represent(s) my target – how I want data represented within the system
- My domain models represent how I can query for and associate data within the system
- In order to be able to use my domain Concepts, I must register them with the system
- The Artifact Model represents my source to target mappings – how I get from the source representation to my domain model
- I can forego mapping to a domain model, but the penalty is a loss of richness in my data representation
 - Limits the types of queries I can perform
 - Limits the types of associations I can draw
Development Process

• Partners are participants – no “siloed” development
 ➢ NTC developers share common code repositories, common collaboration resources, and common development environments
 ➢ NTC provides a partner forums and wiki resources for documentation and collaboration
 ➢ NTC partners participate in NTC development planning and retrospective sessions

• NTC is leveraging an agile development approach
 ➢ Sprints are planned at one-month intervals
 ➢ Goals are established for all NTC developers (core and partner)
 ➢ Daily stand-ups are conducted for each team
 ➢ Retrospective and goal-setting occurs at the end of each sprint
 ➢ Tasks are prioritized according to dependency and sponsor input

• Bottom line: NTC is One Team, One Fight!
Part #4

Data Science Thrust
The Data Science Thrust

- **Purpose:**
 - Develop the Data Representations and Semantics to be used within the Naval Data Ecosystem
 - Provides the foundation for the entire DF-NTC EC

- **Warfare Areas of Interest:**
 - ASW
 - IAMD
 - EXW

- **Key Supporting Domains of Interest:**
 - Combat ID
 - Spectrum Management
 - Cyber
 - Blue and Red Force Readiness
 - Blue and Red Force Structure and Capabilities
 - Plans & Tasks
 - Meteorological and Environment
Data Science Thrust in Context of the NTC Data Ecosystem
From Data Systems to Data Ecosystems

Data Systems:
- Optimized for performance and efficiency, over flexibility and integration
- Interconnection and alignment of data is very difficult

Data Ecosystems:
- Optimized for flexibility and integration over performance and efficiency
- Interconnection and alignment of data is very easy
Objectives

1. Build Out families of Data Representations and Semantics required for modern Naval Warfare.

2. Advance our ability to perform Data Representation and Semantic Mapping

3. Develop Data Representations and Semantics that address challenges of A2AD/D-DIL Environments
1. Build Out Families of Data Representations and Semantics for Naval Warfare

Goal is to develop a foundation that encompasses multiple Naval Mission areas
- Near-Term focus is on ASW, IAMD, and EXW
- Cyber, EW, Spectrum Mgt. are considered key supporting areas
- Long Term looking towards all Naval Mission Areas

Preferred Paradigm
- Artifacts → captured as is
- Metadata → Graph representation (RDF)
- Semantics → OWL/RDFS
- Strong case must be made for other approaches

Leverage existing work being done by relevant COIs, don’t start from scratch!!
- ASW COI → ASW COI Data Model
- IAMD COI → Common Data Model
- Others COIs → Joint, IC, Federal, Coalition (as relevant to Naval Warfare)
1. Build Out Families of Data Representations and Semantics for Naval Warfare (con’t)

- More interested in the actual Data Representation and Semantics, not the tools to produce and manage them
- Interested in techniques for generating OWL/RDFS Semantic definitions from other sources (e.g., UML)
- Looking for Data and Semantic Expertise relevant to the Naval Warfare domain
 - More important to be Domain experts than to be RDF/RDFS/OWL experts
 - Compelling proposals will bring Domain expertise to the Table
- High Productivity is Essential
 - Current pace of building out Data Representations and Semantics is too slow
 - We are looking for proposals where more rapid progress is possible
 - Data Representations/Semantics built out in weeks/months, not in years
2. Advance our ability to perform Data Representation/Semantic Mapping

- We expect the NTC Data Ecosystem to host many different Data Representations and Semantics from different Naval COIs
 - COIs have made significant investments that can change quickly
 - COIs have unique Data Representation needs

- For DF-NTC we want to be able to effectively map between the Data Representations and Semantics of different COIs
 - Map Data Representations between COIs (both logical and physical)
 - Map Semantics to Data Representations
 - Map Semantics between COIs

- Interested in Domain Expertise to Generate Mappings
 - Need mappings between primary COIs ASW, IAMD, EXW
 - Need mappings to supporting domains: Cyber, EW, Spectrum Mgt., . . .
 - The mappings are of greater interest than tools to do mapping

- Need to leverage commercial standards to express mappings
3. Develop Data Representations and Semantics that address challenges of A2AD/D-DIL Environments

- How to account for Data Representation and Semantic information that is distributed over a Tactical Force?
 - How to deal with Identity
 - How to deal with Provenance
 - How to deal with Metadata generation and management

- How do we adjust Data Representation and Semantic information to deal with resource constraints?
 - Constraints on network bandwidth
 - Constraints on storage (onboard ship)

- Can we use variable resolution Data Representation to mitigate A2AD/D-DIL conditions?
 - Multiple Representations of variable size

- How do we support real-time mapping between COI Data Representations and Semantics in A2AD/D-DIL conditions when distributed across a Battle Group?
Summary of Key Challenges

• How can we speed up the creation of data representation and ontology designs from taking years to taking weeks or months?

• How do we avoid the proliferation of too many specialized data representations and ontologies such that it becomes too hard to manage them and integrate them?

• How can we automate the capture and ingestion of legacy data representations and ontologies into RDF/OWL?

• How can we automate the cross-connection of different data representations and ontologies from across diverse communities?

• What are the key data representations and ontology constructs for addressing Cross Warfare Area planning and resource allocation activities
Departing Thoughts

• It isn’t necessary to address the full breadth of all Naval Warfare Areas, but . . .
 ➢ Be sure to address a sufficiently substantial subset
 ➢ Be sure and be able to fully address the scope of your selected subset

• Recognize the Data Science Thrust will support other Thrusts
 ➢ Show how you can be sufficiently flexible to support needs of other Thrusts

• Leveraging Data Representations/Semantics from other Naval Communities is essential
 ➢ Proposing to build from scratch will be looked at with much skepticism
Part #5

Data Ingest & Indexing Thrust
1. Build a rich set of data within the Naval Tactical Cloud Big Data environment that will support the development of advanced analytics for ASW and IAMD

2. Develop enhancements and augmentations to the current Naval Tactical Cloud that facilitate faster and easier data ingest and indexing
1. Build a Rich Set of Data within the NTC

- Developing comprehensive Big Data sets for Naval Warfare has been a challenge
 - Interested in all Naval Mission Areas
 - ASW, IAM, and EXW are the primary focus areas for the BAA
 - Cyber, EW, Spectrum Mgt. are considered key supporting areas

- Goal is to develop robust Big Data sets for Naval Warfare
 - Data Sets directly relevant to ASW and IAM
 - Big Data sets that support ASW and IAM

- Looking for teams with Domain (e.g., Data) expertise
 - We expect all proposers to have experience with Big Data technology
 - Need to show you understand the data, not just the technology
 - Many Naval data sets are highly classified, so must have proper clearances

- Looking for ideas for getting up the Data Curve
 - We are looking for 90% coverage of relevant data, not 10%
 - We are looking for how to bring in real data, from Naval Mission partners
2. Develop enhancements and augmentations to the current Naval Tactical Cloud that facilitate faster and easier data ingest and indexing

• **Goal is to ingest and index faster and more effectively**
 - Interested to enhancements to existing NTC ingest and indexing processes
 - Must show how enhancements will result in actual data getting into NTC

• **For Data Ingest**
 - Primary goal is bringing content into the Naval Data Ecosystem
 - Interested Data Sets directly relevant to ASW and IAMD
 - Interested in relevant supporting data sets (Cyber, EW, Spectrum Mgt.)
 - Interested in enhancements that result in more data ingest production

• **For Data Indexing**
 - Most interested in ideas for general indexing (i.e., indexing for unanticipated use cases, not specific use cases)
 - Interested in indexing for distributed, federated environments (e.g., a Battle Group)
 - Interested in indexing that is robust in A2AD/D-DIL conditions
 - Interested in indexing under constrained storage conditions
Other Considerations

- Experience with NTC-like Big Data platform is important
- Domain Expertise (e.g., understanding the data) is essential
- Key emphasis is ability to ingest and index real data
Part #6

Analytic Thrust / ASW
• Two ASW scenarios cases will be introduced to offer context.

• Three exemplars will briefed:
 ➢ “Mundane” – Ambient Noise
 – Monitoring
 – Analyzing
 – Data sharing
 – Forecasting
 – Alarm triggers
 ➢ “Intermediate” – Acoustic snippet fusion
 – Analyzing
 – Discovery
 – Fusion
 – Bell-ringing
 ➢ “Reach” – Multi-domain info-fusion
 – Prioritized Discovery
 – Multi-domain fusion
 – Situational Awareness / Commanders Intent
 – Decision-making
ASW Scenario – Strike Group Use Case

- Senior Command
- Legacy Combat Systems
- Intel Systems
- Red sub locations
- Charact./capab.
- Realtime I&W
- CNMOC
- Shore Load
- Historical METOC data
- Hist. Threat Data
- Hist. Patterns of Operations
- LCC/CVN
- UxVs
- MPRA
- MH-60
- CG/DDG
- DF NTC

- Readiness
- Plans
- Threat Tracks
- Situational Awareness
- Environ. Monitoring
- Search Plan Monitor
- Alerts
- COA Recommendations
- Envir. Monitoring
- Env. Characterization Analytics
- Search Plan Monitor
- Alerts
- COA Recommend.
Mundane Exemplar of Cloud Analytic in Support of ASW
Ambient Noise Monitoring Analytic

• A series of 5-minute ambient noise measurement have been modeled.
 - Temporal variability
 - Beam-to-beam variability

• A four hour sequence of “measured” noise is depicted.
 - In our exemplar, 80 dB is assumed to be the historical omni-directional (isotropic) noise field.
 - This is what the platform and the ASW Commander would use in planning.
 - For ease of understanding, representations of ambient noise are based on omni-directional noise, such that noise level in the beam is adjusted to reflect what an isotropic noise field would have produced it.

• The last slide:
 - Shows 24 hours of simulated data.
 - Shows what a noise monitoring analytic might do.
 - Suggests additional mundane cloud analytics that might be brought to bear

Today, there is a lot of reliance on historical data for planning and then Situational Awareness
T=0 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
T=0.0833 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
T=0.1666 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T=0.2499 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
$T=0.3332$ Hours
T = 0.4165 Hours

Legend:
- Yellow: Omni-noise as measured in the beam
- Green: Historical omni-noise @ 80 dB
T=0.4998 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T=0.5831 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T=0.6664 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T=0.7497 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
T=0.833 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
T=0.9163 Hours

- **Omni-noise as measured in the beam**
- **Historical omni-noise @ 80 dB**
T=0.9996 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T=1.0829 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T=1.1662 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
$T=1.2495 \text{ Hours}$

- **Omni-noise as measured in the beam**
- **Historical omni-noise @ 80 dB**
T=1.3328 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T=1.4161 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
T=1.4994 Hours

- Yellow: Omni-noise as measured in the beam
- Green: Historical omni-noise @ 80 dB
T=1.5827 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
T=1.666 Hours

- **Omni-noise as measured in the beam**
- **Historical omni-noise @ 80 dB**
T = 1.7493 Hours

Omni-noise as measured in the beam

Historical omni-noise @ 80 dB
T = 1.8326 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T=1.9159 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T = 1.9992 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
T=2.0825 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
T=2.1658 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T=2.2491 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
T = 2.3324 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T=2.4157 Hours
T=2.499 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T = 2.5823 Hours
T=2.6656 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
T=2.7489 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
$T = 2.8322$ Hours

- **Omni-noise as measured in the beam**
- **Historical omni-noise @ 80 dB**
T=2.9155 Hours

Omni-noise as measured in the beam

Historical omni-noise @ 80 dB
T=2.988 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
$T = 3.0821$ Hours

- **Omni-noise as measured in the beam**
- **Historical omni-noise @ 80 dB**
T=3.1654 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
$T=3.2487\,\text{Hours}$

- Yellow: Omni-noise as measured in the beam
- Green: Historical omni-noise @ 80 dB
T=3.332 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
T = 3.4152 Hours
T=3.4986 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
$T=3.5819$ Hours

- **Omni-noise as measured in the beam**
- **Historical omni-noise @ 80 dB**
$T = 3.9151$ Hours
T = 3.9984 Hours

Omni-noise as measured in the beam
Historical omni-noise @ 80 dB
T=4.0817 Hours

- Omni-noise as measured in the beam
- Historical omni-noise @ 80 dB
24 Hours of Beam Noise

- Ambient Noise within 3 dB of Historical Ave.
- Ambient Noise within 6 dB of Historical Ave.
- Ambient Noise not within 6 dB of Historical Ave.

Analytic might describe this data as:
- Mean of 84.3 dB
- Gauss-Markov process
 - Time constant of 12 hours
 - Correlated beam-to-beam

The above description is easily shared across low bandwidth networks and can be used to understand statistical performance of the described sensor.

Other **Analytics** might be applied.
- Alert that ave. ambient noise 4 dB above expected
- Calculate impact on search plan
 - Make recommendations to mitigate
- Identify persistent azimuthal noise field
 - ...

Statistical characterization is invaluable in re-planning and developing Situational Awareness
Intermediate Exemplar of Cloud Analytic in Support of ASW
Acoustic Snippet Aggregation

• Typical framework for identifying contacts of interest and classifying rely on real-time / near real-time activities.
 ➢ Cueing theory applies and data “customers” are either just served once or not at all.
 ➢ At any one time, the target may not provide sufficient evidence for Blue Force decision-making and action.

• Through the cloud there is the opportunity to aggregate evidence of the target
 ➢ Longitudinally with data from the same sensor over time
 ➢ Multiple sensors (including longitudinally) within the same platform
 ➢ Multiple geographically dispersed sensors (including longitudinally)
• Spectrogram of a contact
• Many passive narrow band lines are displayed
• Operator classifies target as benign (not a submarine and not a target of interest)
Automated Track Followers had been assigned by sonar system to the boxed signals.
They were below “threshold” and no alert was generated.
ATF snippets are recorded in the local cloud.
Candidate Cloud ASW Analytics

1. **Analytic** may be able to generate an alert based on combination of the two snippets if they are related and/or map to the best available ONI data.

2. **Analytic** may be able to combine these snippets with previous instantiations (snippets) recorded from the same or other sensors on that platform.

3. **Analytic** queries other clouds to look for snippets that may be correlated.
 - Acoustic content
 - Satisfies kinematic tests

4. Local cloud makes the snippet discoverable to other clouds.

Cloud promotes early detection through system-of-system acoustic data fusion
Reach Exemplar of Cloud Application and Analytics in Support of ASW
Hypothesis of Opportunity

It is hypothesized that:

- decisions based on better data (and better understood data) will generally promote more effective warfighting decisions.
 - All source data fusion
 - Age and quality of data understood
- analytics that search on meta-data will expose new understanding and promote greater situational awareness.
- that the cloud will make data available for more rapid discovery.
 - Tempo of Blue Force decision-making improved.

Exploiting the right data at the right place in a timely manner will improve warfighting outcomes.
Initially, four enemy courses of action are hypothesized for the target of interest.
Threat Characterization Data

Best Available Characterization of Threat (by Hull if Available)

<table>
<thead>
<tr>
<th></th>
<th>Signals</th>
<th>Levels</th>
<th>Prob.</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weapons Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Acoustic Data**
 - Signals
 - Levels
 - Prob.
 - Conditions

- **Weapons Data**
 - Types
 - #s
 - Capab.
 - TTP

- **ECOAs**
 - Missions
 - Operate Profile
 - TTP

...
Notional Cloud Opportunity (cont.)
Notional Cloud Opportunity (cont.)

Logistics & Readiness Common Operational Picture (COP)
Notional Cloud Opportunity (cont.)
Notional Cloud Opportunity (cont.)

Cloud Application & Analytics

Plan
Part #7

Analytic Thrust / IAMD
IAMD Environment
Key Naval Tactical Cloud
Enablers for IAMD

• Combining traditionally stove-piped information into a single repository
 ➢ Some data can be used directly
 ➢ New analytics can be developed that work across data sets

• Ability to store a large volume of information
 ➢ Saves normally discarded data
 ➢ Long-term pattern extraction
 ➢ Understand state at a given time in the past

• Ability to efficiently run big data analytics
 ➢ Previously infeasible questions can now be answered

• Ability to share information among platforms
 ➢ Status and readiness information
Example IAMD Analytic Areas

• Planning
 ➢ Moving assets
 ➢ Positioning assets
 ➢ Sensor configuration and coverage

• Situational Awareness
 ➢ Understanding the environment and changes to it
 ➢ Examples:
 – Indications and warnings (I&W)
 – Alerts
 – Cueing

• Identification and Classification
 ➢ Enriched set of attributes from nontraditional data sources
 ➢ Example:
 – Recommending ID for an unknown combat system track based on data associated from Command and Control System and/or national technical means
Example IAMD Analytic Areas (cont’d)

- **Resource Allocation**
 - Spectrum allocation
 - Weapon usage optimization

- **Course of Action (COA) Recommendation**
 - Recommend COA based on observed behavior and rich set of historical behavior

- **Anomaly Detection**
 - Intent and future movement prediction
 - Indications of malicious cyber activity
 - Detection of enemy war reserve capabilities
Example IAMD Use Cases from BAA

- Improved identity classification, intent and future movement prediction, and track association
- Optimizing sensor configuration
- Identifying unexpected Red air and missile capabilities, behaviors, and operational patterns
- Improved planning of asset movement and tactical utilization
- Weapon usage optimization
- Improved spectrum operations
- Improved situational awareness
- Cyber awareness
IAMD Scenario
Use Case Examples

Joint BMD Command

Operational level of War Planner/TACAID

Navy BMD Assignments

Ashore MOC

CVN LCC & ESG

CG/DDG

Planning today
IAMD Scenario
Use Case Examples

Joint BMD Command

Operational level of War Planner/TACAIR

Navy BMD Assignments

Ashore MOC

CVN LCC & ESG

CG/DDG

Planning today
IAMD Scenario
Use Case Examples

- Joint BMD Command
- Operational level of War Planner/TACAID
 - Generic Atmospherics Model
 - Generic SPY1 Perf. Model

Navy BMD Assignments
- Ashore MOC
- Plans
- CVN
- LCC & ESG
- CG/DDG

Planning today
IAMD Scenario
Use Case Examples

Joint BMD Command

Operational level of War Planner/TACAID
- Generic Atmospherics Model
- Generic SPY1 Perf. Model

• AAW, BMD CG/DDG Selection
• AAW, BMD CG/DDG Positioning

Navy BMD Assignments

Ashore MOC

Plans

CVN

LCC & ESG

CG/DDG

CG/DDG

Planning today
IAMD Scenario
Use Case Examples

Joint BMD Command

Operational level of War Planner/TCAID

- AAW, BMD CG/DDG Selection
- AAW, BMD CG/DDG Positioning

Navy BMD Assignments

Ashore MOC

DF NTC

CVN LCC & ESG

CG/DDG

NTC planning scenario
IAMD Scenario
Use Case Examples

Joint BMD Command

Navy BMD Assignments

Ashore MOC

Operational level of War Planner/TACAIR

• Plans
• Navy BMD Assignments

DF NTC

• AAW, BMD CG/DDG Selection
• AAW, BMD CG/DDG Positioning

CVN, LCC & ESG

CG/DDG

CG/DDG

NTC planning scenario
IAMD Scenario
Use Case Examples

Joint BMD Command

Navy BMD Assignments

Ashore MOC

Operational level of War Planner/TACAID

- Plans
- Navy BMD Assignments

DF NTC

- Historical SPY1 Performance Data
- Historical Climate Data
- Historical SPY1 Readiness Data
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

CVN

LCC & ESG

Shore Data Load

- AAW, BMD CG/DDG Selection
- AAW, BMD CG/DDG Positioning

CG/DDG

NTC planning scenario
IAMD Scenario
Use Case Examples

- Joint BMD Command
- Operational level of War Planner/TACAIR
- Plans
- Navy BMD Assignments

- Navy BMD Assignments
- AAW, BMD CG/DDG Selection
- AAW, BMD CG/DDG Positioning

- Ashore MOC
- Plans

- FNMOC
- Historical SPY1 Performance Data
- Historical Climate Data
- Historical SPY1 Readiness Data
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

- CVN
- LCC & ESG

- CG/DDG
- Shore Data Load

NTC planning scenario
IAMD Scenario
Use Case Examples

Joint BMD Command

Navy BMD Assignments

Ashore MOC

Operational level of War Planner/TACAID

• Plans
• Navy BMD Assignments

DF NTC

• Historical SPY1 Performance Data
• Historical Climate Data
• Historical SPY1 Readiness Data
• Historical Enemy COAs
• Historical Patterns of observed operational behavior

CVN LCC & ESG

CG/DDG

Shore Data Load

FNMOC

UXVs

R.T Atmospheric Data

Atmospheric Forecasts

• AAW, BMD CG/DDG Selection
• AAW, BMD CG/DDG Positioning
IAMD Scenario
Use Case Examples

Joint BMD Command
- Navy BMD Assignments
 - Ashore MOC

Intel Systems
- Real-time I&W
- Red launcher locations
- Real-time Red jammers

Operational level of War Planner/TACAID
- Plans
- Navy BMD Assignments

DF NTC
- Intel
- R.T Atmospheric Data
- Atmospheric Forecasts

CVN
- Historical SPY1 Performance Data
- Historical Climate Data
- Historical SPY1 Readiness Data

LCC & ESG
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

Shore Data Load

AAW, BMD CG/DDG Selection
AAW, BMD CG/DDG Positioning

CG/DDG

UXVs

FNMOCT

NTC planning scenario
IAMD Scenario
Use Case Examples

- Joint BMD Command
- Navy BMD Assignments
- Ashore MOC
- Intel Systems
 - Real-time I&W
 - Red launcher locations
 - Real-time Red jammers
 - R.T Atmospheric Data
 - Atmospheric Forecasts
- UXVs
- FNMOC

Operational level of War Planner/TACAIR
- Plans
- Navy BMD Assignments

DF NTC
- Historical SPY1 Performance Data
- Historical Climate Data
- Historical SPY1 Readiness Data
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

Shore Data Load

- AAW, BMD CG/DDG Selection
- AAW, BMD CG/DDG Positioning

CG/DDG
DF NTC
DF NTC
DF NTC
DF NTC
CG/DDG

NTC planning scenario
IAMD Scenario
Use Case Examples

Joint BMD Command

Navy BMD Assignments

Ashore MOC

Intel Systems

• Real-time I&W
• Red launcher locations
• Real-time Red jammers

DF NTC

Operational level of War Planner/TACAID

• Plans
• Plans

CVN

LCC & ESG

DF NTC

• Historical SPY1 Performance Data
• Historical Climate Data
• Historical SPY1 Readiness Data
• Historical Enemy COAs
• Historical Patterns of observed operational behavior

DF NTC

• R.T. SPY1 Performance data
• R.T. SPY1
• R.T. Readiness Data

CG/DDG

FNMOC

• AAW, BMD CG/DDG Selection
• AAW, BMD CG/DDG Positioning

UXVs

Navy BMD Assignments

DF NTC

Shore Data Load

CVN

LCC & ESG

CG/DDG

DF NTC

DF NTC

CG/DDG

DF NTC

DF NTC

NTC planning scenario
IAMD Scenario
Use Case Examples

Joint BMD Command
Navy BMD Assignments
Ashore MOC

Operational level of War Planner/TACAIM
- Generic Atmospherics Model
- Generic SPY1 Perf. Model

DF NTC
- R.T. SPY1 Performance data
- R.T. SPY1
- R.T. Readiness Data
- Historical Climate Data
- Historical SPY1 Readiness Data
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

Intel Systems
- Real-time I&W
- Red launcher locations
- Real-time Red jammers

Intel
- R.T. Atmospheric Data
- Atmospheric Forecasts

CVN
LCC & ESG

CG/DDG

UXVs

FNMOC

Shore Data Load

NTC planning scenario
IAMD Scenario
Use Case Examples

Joint BMD Command

Navy BMD Assignments

Ashore MOC

Intel Systems

• Real-time I&W
• Red launcher locations
• Real-time Red jammers

UXVs

FNMOC

Operational level of War Planner/TACAID

• Generic Atmospherics Model
• Generic SPY1 Perf. Model

DF NTC

• Historical SPY1 Performance Data
• Historical Climate Data
• Historical SPY1 Readiness Data
• Historical Enemy COAs
• Historical Patterns of observed operational behavior

Shore Data Load

• AAW, BMD CG/DDG Selection
• AAW, BMD CG/DDG Positioning

DF NTC

• R.T. SPY1 Performance data
• R.T. SPY1
• R.T. Readiness Data

CVN LCC & ESG

Data

• Historical Climate Data
• Historical SPY1 Readiness Data
• Historical Enemy COAs
• Historical Patterns of observed operational behavior

DF NTC

CG/DDG

DF NTC

CG/DDG

DF NTC

Feedback loop supports replan at multiple levels
IAMD Scenario
Use Case Examples

Joint
BMD
Command

Operational level
of War
Planner/TACAID

• Generic Atmospherics
Model
• Generic SPY1 Perf.
Model

DF
NTC

• AAW, BMD CG/DDG Selection
• AAW, BMD CG/DDG Positioning

• R.T. SPY1
Performance
data
• R.T. SPY1
• R.T. Readiness
Data

• Historical SPY1 Performance
Data
• Historical Climate Data
• Historical SPY1 Readiness
Data
• Historical Enemy COAs
• Historical Patterns of
observed operational
behavior

Shore Data Load

Feedback loop
supports replan
at multiple levels
IAMD Scenario
Use Case Examples

Joint BMD Command
- Navy BMD Assignments
- Ashore MOC

Operational level of War Planner/TACAIR
- Generic Atmospherics Model
- Generic SPY1 Perf. Model

DF NTC
- Real-time Readiness
- Actual Sensor Coverage

Intel Systems
- Real-time I&W
- Red launcher locations
- Real-time Red jammers
- Intel
- R.T Atmospheric Data
- Atmospheric Forecasts

UXVs

FNMOC

Shore Data Load

CVN LCC & ESG

DF NTC
- Historical SPY1 Performance Data
- Historical Climate Data
- Historical SPY1 Readiness Data
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

CG/DDG

DF NTC
- AAW, BMD CG/DDG Selection
- AAW, BMD CG/DDG Positioning

DF NTC
- R.T. SPY1 Performance data
- R.T. SPY1
- R.T. Readiness Data

Feedback loop supports replan at multiple levels
IAMD Scenario
Use Case Examples

Operational level of War Planner/TACAIR

- Historical SPY1 Performance Data
- Historical Climate Data
- Historical SPY1 Readiness Data
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

Shore Data Load

NTC execution scenario
IAMD Scenario
Use Case Examples

Operational level of War Planner/TACAID

- Historical SPY1 Performance Data
- Historical Climate Data
- Historical SPY1 Readiness Data
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

Shore Data Load

OG
LCC & ESG
CVN

DF NTC

CG/DDG

DF NTC

DF NTC

DF NTC

DF NTC

Shore Data
DF NTC
Intel Data

NTC execution scenario
IAMD Scenario
Use Case Examples

Operational level of War Planner/TACAID

DF NTC

• Historical SPY1 Performance Data
• Historical Climate Data
• Historical SPY1 Readiness Data
• Historical Enemy COAs
• Historical Patterns of observed operational behavior

Shore Data Load

CG/DDG

DF NTC

CVN LCC & ESG

DF NTC

CG/DDG

DF NTC

CG/DDG

DF NTC

• R.T. Tracks
• R.T. Readiness
• Plans

Shore Data
DF NTC
Intel Data
IAMD Scenario
Use Case Examples

Operational level of War Planner/TACAID

DF NTC

CVN
LCC & ESG

• Historical SPY1 Performance Data
• Historical Climate Data
• Historical SPY1 Readiness Data
• Historical Enemy COAs
• Historical Patterns of observed operational behavior

Shore Data Load

CG/DDG

DF NTC

DF NTC

DF NTC

DF NTC

CG/DDG

• R.T. Tracks
• R.T. Readiness
• Plans

Shore Data
DF NTC
Intel Data

Analytic-driven data can initiate execution changes
Analytic-driven data can initiate execution changes
Operational level of War Planner/TACAIR

- Historical SPY1 Performance Data
- Historical Climate Data
- Historical SPY1 Readiness Data
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

Shore Data Load

- R.T. Tracks
- R.T. Readiness
- Plans
- Alerts/I&W/Cueing
- Non-organic Tracks
- Track ID
- COA Recommendations

Analytic-driven data can initiate execution changes
IAMD Scenario
Use Case Examples

Operational level of War Planner/TACAID

- Alerts
- I&W
- Cueing

DF NTC

CVN LCC & ESG

- Historical SPY1 Performance Data
- Historical Climate Data
- Historical SPY1 Readiness Data
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

Shore Data Load

CG/DDG

DF NTC

DF NTC

DF NTC

CG/DDG

CG/DDG

- Alerts/I&W/Cueing
- Non-organic Tracks
- Track ID
- COA
- Recommendations

Analytic-driven data can initiate execution changes
IAMD Scenario
Use Case Examples

Shore Sites

Operational level of War Planner/TACAID

• Historical SPY1 Performance Data
• Historical Climate Data
• Historical SPY1 Readiness Data
• Historical Enemy COAs
• Historical Patterns of observed operational behavior

Shore Data Load

DF NTC

CVN
LCC & ESG

DF NTC

CG/DDG

DF NTC

CG/DDG

DF NTC

CG/DDG

DF NTC

Intel Data

Shore Data

R.T. Tracks
R.T. Readiness
Plans

NTC will support A2AD/D-DIL Sync, distributed query, alerts, etc. during execution
IAMD Scenario
Use Case Examples

Shore Sites

Operational level of War Planner/TACAID

DF NTC

- Prioritized Info Exchange

CVN LCC & ESG

- Prioritized Info Exchange

CG/DDG

- Historical SPY1 Performance Data
- Historical Climate Data
- Historical SPY1 Readiness Data
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

Shore Data Load

DF NTC

CG/DDG

DF NTC

CG/DDG

NRC will support A2AD/D-DIL Sync, distributed query, alerts, etc. during execution

DF NTC

Intel Data

Shore Data

DF NTC

R.T. Tracks
- R.T. Readiness
- Plans
IAMD Scenario
Use Case Examples

Shore Sites

Operational level of War Planner/TACAIR

DF NTC

CVN, LCC & ESG

- Historical SPY1 Performance Data
- Historical Climate Data
- Historical SPY1 Readiness Data
- Historical Enemy COAs
- Historical Patterns of observed operational behavior

Shore Data Repository

DF NTC

CG/DDG

- R.T. Tracks
- R.T. Readiness
- Plans

Shore Data

DF NTC

Intel Data

NTC will support bulk offload of collected data at end of deployment
IAMD Data Science Challenges

- **IAMD systems produce large volumes of data**
 - What should be ingested?
 - Where should filtering occur?
 - What processing is needed inside combat system?
 - How should the data should be indexed?
 - How should data be retained and for how long?
 - How will data be shared in an Anti-Access Area Denial (A2AD)/Disrupted, Disconnected, Intermittent and Limited bandwidth (D-DIL) environment?

- **IAMD will require diverse analytics and data sets**
 - Weather and sensor performance prediction versus track anomaly prediction
 - Track example: Update rates range from very fast to very slow
 - Many times per second for sensor data
 - 10s of times per minute for tracked entities
 - Minutes, hours, or days for untracked entities
 - Cross-warfare area data sharing: What data is available? Where else can IAMD data be used?

- **Real-time Analytics**
 - Analytics may need to respond within seconds (or less) upon updates to entity data
 - Indications and warnings
 - How are analytics prioritized (e.g., I&W higher priority than planning?)?
Part #8

Security Thrust
Data Cloud Security and Integrity: Challenges

- Adapt/improve technologies or techniques to protect the NTC by identifying, isolating, and/or removing adversary cyber actors from this infrastructure.
- Develop analogous capabilities or new approaches for the Naval Big Data Ecosystem to assure the integrity and accuracy of the underlying data (which consists of many different types / formats) used to make decisions.
- Integrate these capabilities into advanced cyber analytics / applications that leverage the NTC analytic environment while being simple enough for a sailor to operate.

The migration to the NTC provides an opportunity to give the warfighter the flexibility to fight through an adversary's attempts to use cyber to degrade or deny the decision making capabilities of naval commanders.
Combat System
Objective Architecture
and DF-NTC Perspective

Kathy Emery
PEO IWS D1
kathy.emery@navy.mil

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
Program Executive Office
Integrated Warfare Systems

PEO IWS develops, procures and delivers Integrated Warfighting Solutions for Surface Ships

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
PEO IWS Combat System Strategy

- Enhance mission capability across Surface Fleet with faster and more affordable upgrades that are interoperable and pace the threat
 - Decouple combat system acquisition from ship programs
 - Install combat system-wide network-based COTS computing environment (hardware and software)
 - Define a common objective combat system architecture and associated network-based information exchange standards
 - Standardized interfaces support commonality across ship classes
 - Flexible “information bus” simplifies integration of new CS capability
 - Reduce combat system variants and apply a product line approach for new development that aligns with objective architecture
 - Focus on fielding end-to-end capabilities vs. systems

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
Combat System Objective Architecture

Common Core Domains

- External Comms
- Display Services
- Vehicle Control
- Sensor Mgmt
- Combat Control
- Weapon Mgmt
- Track Mgmt
- Integrated Training
- Navigation
- Infrastructure

Combat System LAN

ExComm

Vehicles

Sensors

Nav Systems

Weapons

Training Systems

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
Information-Oriented Architecture Is Key to Defining Reusable, Extensible Components

- Define a **common data model** and information standard
- Component-to-network interfaces, not component-to-component
- **Publish** information for any authorized **subscriber** to access
- Producers of information don’t have to be aware of consumers
- Objective architecture defines interfaces for extensibility and reuse
Today’s Shipboard Environment
(Direct interfaces, weak inter-enclave integration)
Future Shipboard Environment
(Network interfaces, significant cross-enclave integration, IA defense in depth)

Aviation Systems
- ADMACS Blk III
- ILARTS
- TACAN
- LRLS
- CMRT

Combat Systems
- IRST
- TISS
- CIWS
- EWS
- CST
- OMLS
- DBR
- SSDS

Nav and HM&E Systems
- NAV
- NAVSSI
- Fathometer
- SPS-73
- RLGN
- DSVL
- AIS
- TTS

External Comms Systems
- MIDS
- CDL-S
- Gerude
- JTT-M
- MCCP
- SQO-11
- GBS
- ARC 210
- ARC III
- HPRG
- DMR
- HSFB
- TVS
- TV-DTS

C4I Systems
- GCCS-M
- DCGS-N
- SCIS
- SSEE
- INC F
- NITES
- TBMCS
- DCSS
- IA
- NTCSS
- BFEM
- MELAN

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
Gateway and Boundary Defense Capability (BDC)

Data Exchanges
- GCCS-M / CV-TSC (Tracks and Overlays)
- CV-TSC / USW-DSS / JMPS (ASW & Planning Data)
- CV-TSC / SIPR (Chat, Web Browsing)
- SEWIP / GCCS-M (COP Virtual Terminal)
- SEWIP / SIPR (Parametric Library)
- SSDS / SIPR (BG Chat)
- BFTT / NCTE (Fleet Synthetic Training)
- CDL-S / CV-TSC (MH-60 Data)
- CV-TSC / NITES (Weather)
- SSDS / Video Displays (ASTAB Data)
- SSDS / GCCS-M (Track Data Manager) (Future)
- DBR / NITES (Weather) (Future)

Common portal that can serve as single point for data exchange between CS and C2 and provide IA protection for each domain
- Enable CS operators/applications to obtain required C2 and off-board data via network connection instead of using “sneaker net”
- Expose existing CS data in a controlled manner to C2 users
- Automatically label data with ICISM tags
- Automatic virus scan and verify bulk data
- Verify data before installing within CS
- Better access control to external web sites
- Don’t need to rely on ship’s crew establishing and removing temporary connections for distance support

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
Gateway Supports Speed to Fielding Objectives

- Combat system performance is stringently engineered and CS changes go through a rigorous test & cert process
- Gateway decouples CS and C2 applications to allow C2 applications to evolve rapidly without triggering a CS recertification
 - CS side of gateway will be engineered to expose useful CS data and to appropriately tag data to allow access by authorized users without impacting CS performance
 - C2 side of gateway will react to user-defined rule sets to transfer operationally relevant data to client applications
- CS will evolve more slowly through a series of Advanced Capability Builds to exploit additional data available from C4ISR systems via the gateway/BDC
MH-60R / Ship Integration Architecture for CVNs

Gateway w/ BDC

CANES

USW DSS (USW C2)

GIG

NITES

ADNS

GCCS-M/ MTC2

CDL

Sensor data & controls, video

Radar Video, FLIR/ISAR

Acoustic Helo Data

USW Plans

Track Data, FLIR, Radar

Voice Radar Video

Many consoles & displays

SSDS

Vehicular Tracks, Special Points, ASW/EW LOBs

Link 16

ASTAC Operator

EW System (SEWIP)

EW Operator

CS LAN

SUW/USW TOC

EW System

SCC Watchstanders

Ownship-controlled Vehicles Persistent ISR Assets

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
S&T Challenges With Particular CS Relevance

- Improved coordination across operational and tactical mission planning activities, shared analytics, access to real-time readiness data
- Proactive ship stationing and sensor setup for potential adversary actions
- Environmental data to improve sensor laydown, search plans, and processing in adverse environmental conditions
- Improved ASW contact following from shared pre-contact data and analytics
- Improved situational awareness due to increased coverage from long-range sensors and persistent ISR assets
- Indications and Warnings to focus CS sensor assets on critical sectors
- Improved association of sensor data under ambiguous conditions
- Additional sensor attribute data to improve threat assessment, classification and identification
- Improved prediction of future target movement and corresponding system responses
- Ability to rapidly change response to new unexpected threat behavior in a deterministic and verifiable manner
Program Executive Office
Command, Control, Communications, Computers and Intelligence (PEO C4I)

Battlespace Awareness and Information Operations
Program Office (PMW 120)
Distributed Common Ground System – Navy (DCGS-N)
Increment 2 Overview for the ONR Data Focused Naval Tactical Cloud Industry Day

24 June 2014
Jerry M. Almazan
Technical Director
(619)524-7889
gerry.almazan@navy.mil

Statement A: Approved for public release; distribution is unlimited (20 JUNE 2014)
Briefing Agenda

• DCGS-N Inc 2 Operational View
• DCGS-N PORs & Prototyping Efforts
 ➢ Inc 1, Inc 2, & NITROS (Naval Integrated Tactical – Cloud Reference for Operational Superiority)
• Migration to Automated Workflows
• Program Structure
• DF NTC Research Opportunities for DCGS-N Inc 2
• Other Industry Collaboration Areas
DCGS-N Increment 2
Operational View

Navy interfaces with IC architecture via Navy Ashore Enterprise Node or individual Afloat nodes located forward on afloat force-level units.

Legend
- DCGS-N Inc 2 Nodes
- Other Cloud Nodes

DCGS FoS
IC Big Data Nodes
Other Data Nodes (e.g., FNMOC)
Navy Ashore Enterprise Node
MOCs
CG / DDG (BMD or Independent Ops)
TACAIR
E-2
Naval & Joint Airborne ISR
Carrier Strike Group or JFMCC afloat
Black Hull

Afloat Node forward with computing, analytics, and distribution mgmt (Force Level ships w/ data on board for D/DIL)
DCGS-N Increment 1
Where We’ve Been…

Inc 1 was about consolidating capability…
- Merged delivery of ISR&T tools and integrated priority SIGINT & IMINT capabilities
- Delivered an 80% solution / Milestone C in 2 years from program reset
- More than 29 Fleet Installations

... and taking the first steps towards a hosted environment
- Phased migration to CANES (Inc 1 Block 2)
- Get out of the hardware business and ultimately focus on the ISR&T support tools

While Inc 1 continues to meet C/S/P, its lack of “bottom-up” design resulted …
- Hard to use …
- Challenging to train …
- Difficult to maintain, and …
- Simply not a satisfying experience for the sailor!

DCGS-N Inc 2 will fundamentally change this paradigm to resolve current readiness challenges and provide a system that is easier to operate, train, and maintain
DCGS-N Increment 2
Where We’re Going…

- Pre-Baseline-

DCGS-N Inc 2 will rapidly field ISR&T support capabilities …

- Annual Fleet Capability Releases that leverage COTS/GOTS tools/services
- Agile System Engineering incorporates Requirements Governance Board priorities and user feedback into development

… and complete the migration to a hosted environment …

With the time to build on, fix and streamline Information Dominance Corps’ tools …

- Familiar tools and processes, refactored to the Cloud …
- Intuitive workflow-centric design …
- Anomaly detection, exploitation and automatic fusion …
- … to combat increased data loads brought on by the sensor “tipping point” and optimize sailor capabilities!
PEO C4I’s NITROS Prototype Helps Us Get There... - Pre-Baseline -

DCGS-N Inc 2’s FCR-0 will deliver an early look at our capabilities to NITROS...
- 4 IDC KPPs
 - Automatic Fusion
 - Automated Exploitation & Detection
 - Visualization
 - Collection Management & Awareness
- Core legacy apps co-existing with large-data store
 - GALE (SIGINT), SOCET (IMINT / Targeting), CMMA (Collection Management)

... and wring out our agile processes...
- Requirements
- Contracting
- Integration & Development
- Cyber Security
- T&E
- Fielding
... via continuous involvement with our Fleet, POR, and S&T partners!

FCR-0/NITROS will provide lessons learned to DCGS-N Inc 2, other PORs and projects, and Fleet IDC Partners in prep for Inc 2 FCR-1 and beyond
Complementary Role of Legacy Apps in a Workflow World

It’s hard to ask the questions today, that we need to answer tomorrow …

Intuitive workflows & automated fusion are based on anticipating questions and …

- Generating an encyclopedic grasp of the environment …
- Reducing the need for situational awareness (SA) maintenance …
- Optimizing the analysts' time, to focus on anomalies, issues, and uncertainties

... while relevant legacy apps (i.e., outside the automated workflow) help answer the unanticipated question …

- Providing forensic, recursive analysis …
- Answering new questions about old data …
- Ensuring survivable decision support that avoids the historian’s fallacy

Together, DCGS-N Inc 2 will provide the tools and time to answer tomorrow’s questions – supporting timely, accurate SA and enhanced speed to decision
DCGS-N Inc 2
Program Structure

MDD
CDD Validation
Development RFP Release
patch 1

Materiel Solution Analysis
Risk Reduction

AoA Analysis of Alternatives
BD Build Decision
BTR Build Technical Review
FCR Fleet Capability Release
FD Fielding Decision
FDDR Full Deployment Decision Review
FTR Fielding Technical Review
IT Integrated Test
KPP Key Performance Parameter
MDM Materiel Development Decision
OT&E Operational Test & Evaluation
RFP Request for Proposal
RGB Requirements Governance Board

AoA

FCR-1
FCR-2
FCR-3
FCR-4
FCR-5

FD
B

OT&E
Development & Fielding
Operations & Support
Sustainment

User Input
IT Box supports Evolutionary Acquisition and Agile Development based on rapidly changing Fleet priorities. Each FCR builds on the prior FCR.

FCR-0
iso PEO C4I's NITROS Prototype

Preliminary FCR Objectives – subject to trade-off analysis/feasibility assessment and RGB approval

<table>
<thead>
<tr>
<th>FCR-1</th>
<th>FCR-2</th>
<th>FCR-3</th>
<th>FCR-4</th>
<th>FCR-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Refactor DCGS-N Inc 1 to the cloud</td>
<td>▪ GEOINT Workflow updates and targeting support</td>
<td>▪ Current readiness updates</td>
<td>▪ Current readiness updates</td>
<td>▪ Current readiness updates</td>
</tr>
<tr>
<td>▪ SIGINT/Tracks Workflows</td>
<td>▪ FCR-1 backlog/deferred requirements</td>
<td>▪ FCR-2 backlog/deferred requirements</td>
<td>▪ FCR-3 backlog/deferred requirements</td>
<td>▪ FCR-4 backlog/deferred requirements</td>
</tr>
<tr>
<td>▪ KPP initial minimums</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Illustrates the program structure and sequence of decision events only; not intended to reflect time

▪ FCR-1 BD in conjunction with Milestone B
▪ Subsequent FCR-n BDs delegated to Navy
▪ FD authority delegated to Navy following FDDR

FCR Model

IT Box supports Evolutionary Acquisition and Agile Development based on rapidly changing Fleet priorities. Each FCR builds on the prior FCR.
• Anti-Submarine Warfare (ASW) Area
 ➢ Enemy Course of Action Data
 – Use of Historical Pattern of Life Data
 ➢ Organic/Non-Organic Environmental Data to Support Mission Planning (including optimal sensor deployment) and Dynamic Execution
 – Monitor differences between expected & actual conditions
 ➢ National Technical Means
• Integrated Air/Missile Defense (IAMD) Area
 ➢ Improved Identity Classification, Intent & Future Movement Prediction, & Association
 – Fuse Organic & Non-Organic, Multi-INT to ID Maritime Objects of Interest (MOI’s)
 – Predict Intent & Future Movement
 – Association with other MOI’s
 ➢ Threat Evaluation and Weapon Assignment (TEWA)
 – Improved Situational Awareness
 – ID Adversary Capabilities, Behaviors, & Operational Patterns
 – Improved Planning of Asset Movement and Optimized Weapon Usage
 ➢ Battle Damage Assessment (BDA)
 – Multi-INT/Multi-Source (including Cyber)
 ➢ Improved Spectrum Operations
 ➢ Cyber Awareness
Other Industry Collaboration Areas

Where We Need Your Help

- **CLOUD Challenges**
 - CLOUD sync in challenged bandwidth environments
 - CLOUD related "dashboards" that provide system status (HW & SW) and self healing/help

- **Data Science & Management**
 - Identify Data Sources, Define the Metadata and Objects, Develop Ingestion, & Indexing strategies in support of Alerting & Multi-Int Fusion
 - Move disparate data from multiple sources and security domains into a common maritime-defined schema (Subject, Predicate, and Object) in real-time
 - Development of non-proprietary interoperable technology standards. Example standards for virtualization technology.

- **Automated Correlation & Fusion to Maritime Objects**
 - Correlate & Fuse to the correct vessel

- **Full Motion Video (FMV) Automated Object Recognition (AOR) in a Maritime Environment**
 - Automatically detect & recognize Maritime Objects of Interest (MOIs) from FMV
 - Extract Geospatial Intelligence from sensor metadata

- **Fusion-Based Anomaly Detection**
 - Correctly detect anomalous behavior of objects that deviates from normal historical patterns
 - Heuristic/Rule-based analytics & machine-learning algorithms using all-source data to be considered

- **Automated Deceptive or Non-emitting Vessel Tracking**
 - Automatically recognize and track vessels that are not broadcasting correct AIS data

- **Automated Alerting**
 - Automatically alert correctly on user-defined Vessel of Interest criteria
We Deliver C4I Capabilities to the Warfighter

Visit us at www.peoc4i.navy.mil
Program Executive Office
Command, Control, Communications, Computers and Intelligence (PEO C4I)

MTC2 Industry Day Brief

24 June 2014
Patrick Garcia
PMW150 Technical Director
858.537.0578
patrick.garcia@navy.mil

Statement A: Approved for public release, distribution is unlimited (23 JUNE 2014)
Agenda

- BLUF
- Development Strategy and Schedule
- Requirements Development
- Integration with Naval Integrated Tactical-Cloud Reference for Operational Superiority (NITROS)/NTC-RI
- C2 S&T Challenges
• Current Focus
 - Requirement maturation
 - Evaluation of materiel solutions against those requirements

• MTC2 Design Concept
 - Provide core functions while in an austere data environment
 - Provide enhanced functionality in a rich data environment
 - Per OPNAV, leverage the rich data that cloud-enabled environments may provide

• MTC2 Capabilities
 - Move beyond current C2 designs (historically focused on only SA)
 - Leverage additional data from a spectrum of resources when available
MTC2 Development Strategy

There will be 4 main efforts for MTC2

<table>
<thead>
<tr>
<th>MTC2 Variant</th>
<th>Fielding Sites</th>
<th>Fielding Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTC2 (SOA)</td>
<td>2 sites running C2RPC UCB II</td>
<td>4QFY14</td>
<td>Updated & Accredited version of C2RPC UCB II</td>
</tr>
<tr>
<td>MTC2 R0</td>
<td>2 Sites (1 afloat and 1 ashore)</td>
<td>Operational Prototype – 2QFY16</td>
<td>Prototype fielding to support requirements validation and R1 activities</td>
</tr>
<tr>
<td>MTC2 R1</td>
<td>All sites (afloat and ashore)</td>
<td>Initial Fielding – 1QFY18</td>
<td>GCCS-M Replacement. Initial PoR fielding</td>
</tr>
<tr>
<td>MTC2 R2 (TBD)</td>
<td>All sites (afloat and ashore)</td>
<td>Initial Fielding – 1QFY19</td>
<td>MTC2 leveraging enhanced data services and availability</td>
</tr>
</tbody>
</table>
MTC2 Schedule Alignment with NTC

<table>
<thead>
<tr>
<th>Phases and Milestones</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTC2 R0 Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2 SOA SETR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMRR Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 Build Decision</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTC Production HW Available</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regts' and Contracting</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDP Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD1 Refinement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engineering</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTC2-R0 Architecture/design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2 (SOA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2 R1 Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integration and Test Events</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTC2 R0 Integration & Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTC Prototype 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTC/Tactical Data Cloud EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCHEDULE</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CY14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY15 FY16 FY17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CY15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As of 14 Mar 14

Refugio Delgado provided by on 10 Jan 2014

Legend:
- MTC2
- MTC2 (SOA)
- MTC2 R0
- MTC2 R1
- NTC
MTC2 R1/R2 Capability Areas and Echelons

C2 Capability Areas

<table>
<thead>
<tr>
<th>CA-1</th>
<th>CA-2</th>
<th>CA-3</th>
<th>CA-4</th>
<th>CA-5</th>
<th>CA-6</th>
<th>CA-7</th>
<th>CA-8</th>
<th>CA-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Leadership</td>
<td>Organization & Command Relationships</td>
<td>Situational Awareness</td>
<td>CDR's Intent & Guidance</td>
<td>Collaborative Planning</td>
<td>Synchronize Execution</td>
<td>Monitor & Assess</td>
<td>Leverage Mission Partners</td>
<td>Core Enabling Capabilities</td>
</tr>
</tbody>
</table>

C2 Echelons

- OPNAV/USFF/NCF/CPF
- MOC/CTF
- CSG/ESG/ARG
- SAG
- Unit (Various)

MTC2 Requirements

- ROE, Op Risk Mgmt, Authorities
- Mission Readiness Assessment
- Task Organization, Org Charts
- Command Relationships
- Enhanced COP, Info Drill-Down
- Environmental, Dashboards, Collaboration
- CDR's Intent & Guidance
- Plan/Order Development, Sync Matrix
- Deployment/Employment Scheduling
- Tasking
- Mission Partner Collaboration, RFS
- Decision Points
- RFS, & Info Sharing
- Workflows, Alerts, Viz Preferences
- D-DIL, Security, Info Mgmt
PEO C4I NITROS Prototype Helps Us Get There...

MTC2 R0 will deliver an early look at our capabilities to NITROS ...
- Track and Overlay Management
- CCIR/PIR
- Common Map API
- Focus on deploy-ability, supportability, maintainability and scale-ability
- Consolidated Data Store
- Establish Normalized Data Layer
- Reduce IA vulnerabilities

... and wringing out our agile processes ...
- Requirements
- Contracting
- Integration & Development
- Cyber Security
- T&E
- Fielding

... via continuous involvement with our Fleet, POR, and S&T partners!

NITROS will provide lessons learned to MTC2, other PORs and projects too!
S&T C2 Challenges

- Provide the Commander with timely, continuous and automated IAMD and ASW:
 - Overall Mission Assessment
 - Course Of Actions (COAs) recommendations
 - “What If” warfighter options
We Deliver Information Dominance Capabilities to the Warfighter

Visit us at www.peoc4i.navy.mil