
ONR BAA Industry Day
Late-stage Software Customization and Complexity

Reduction S&T for Legacy Naval Systems (N00014-17-S-B010)

DISTRIBUTION A. Approved for public release: distribution unlimited.

UNCLASSIFIED

28 March 2017

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 2 of 21

Introduction

ÅONR office: Code 311 ς Computer, Mathematics &
Information Sciences Division)

ÅONR Cyber Program Officers involved:
ïMr. Gary Toth

ïDr. Sukarno Mertoguno,

ïDr. Ryan Craven

ïDr. Daniel Koller

ïMr. Ryan Gunst (clifford.gunst@navy.mil)

ÅAll technical questions should be directed to Mr. Gunst

ÅAll proposals should be addressed to Mr. Toth (1 May)
ïDetailed instructions in the BAA

mailto:clifford.gunst@navy.mil

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 3 of 21

BAA Overview (N00014-17-S-B010)

ÅTitle: Late-stage Software Customization and Complexity
Reduction S&T for Legacy Naval Systems

ÅFive Technical Areas (TA):
1. Functionality identification and reduction

2. De-bloat/de-layer (functionality-preserving complexity reduction)

3. Addition of security constructs

4. Verification and Validation

5. Supportive and complementary approaches

FY17 FY18

* Approximate

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 4 of 21

Tech Push

ÅImportant: This is not a purely basic research BAA

ÅGoal of this effort is to aggressively push novel and
game-changing technology to the fleet

Å In your proposals,
consider how you will
create tools that can be
transitioned to and used
by a government lab

ÅUniv.: this may require you
to consider including
engineering support Target	customer

Types	of	S&T	programs	within	ONR:

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 5 of 21

BACKGROUND: Modern software is exceedingly complex and bloated

- Current practices encourage it (OOP, layers of abstraction, etc.)

- Priority is to maximize code reuse
and increase programmer productivity

- One-size-fits-all feature set

SW Complexity and Bloat

Rube Goldberg machine

Complicated gadget that performs
simple tasks in indirect, convoluted ways

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 6 of 21

BACKGROUND: Modern software is exceedingly complex and bloated

- Current practices encourage it (OOP, layers of abstraction, etc.)

- Priority is to maximize code reuse
and increase programmer productivity

- One-size-fits-all feature set

SW Complexity and Bloat

Á άIn every application we looked at, an enormous
amount of activity was executed to accomplish
simple tasksΦέ

Á άFor example, a stock brokerage benchmark
executes 268 method calls and creates
70 new objects just to move a single date field
ŦǊƻƳ {h!t ǘƻ WŀǾŀΦέ

Excerpted from:
Sevitsky et. al. (IBM TJ Watson Research Center) on framework based applications
http:// lcsd05.cs.tamu.edu/papers/sevitsky_et_al.pdf

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 7 of 21

SW Complexity and Bloat

EXISTING APPROACHES:

REACTIVE

Å Patching
Å Signature-based

malware scanning

EXPENSIVE & OFTEN
IMPERFECT DEFEATABLE TRICKS

Å Address Space Layout
Randomization (ASLR)

Å Stack canaries
Å Anti-ROP (ret frequency

counting, etc.)

Å API guards
Å Shadow stacks
Å Control-flow Integrity

EXACERBATES SECURITY ISSUES:

ÅWidespread use of untrusted 3rd party
libraries and runtime environments
(broad attack surface)

Å Security analysis is more difficult
(more code, more complexity)

Å One size fits all approach enables more
robust attack planning and makes code
reuse attacks easier

WEB BROWSER

RUNTIME

[L.w!wL9{ όΧύ

Webkit

JavaScript
Engine XML

CSS
Parser

[L.w!wL9{ όΧύ

libXML

Openssl 9ǘŎΧ

libpng

Layers,
wrappers

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 8 of 21

Underlying analysis (code analysis, control-flow extraction, etc.)

RESEARCH VISION: Late-stage / install-time transformations
ïHard to change the way people write code, so work around it

ïSeries of automated transformations for legacy code

ïFour independent, separate steps
ÅTrimming tools should cut as aggressively as possible

ÅUnderlying analysis needed by each tool is different, but will likely overlap

Improving Software Robustness and Efficiency
Architecture & Strategy for Development & Deployment

Feature
Removal

de-Layer
de-Bloat

Harden
Security

Verify and
Validate

Executable
code

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 9 of 21

Underlying analysis (code analysis, control-flow extraction, etc.)

RESEARCH VISION: Late-stage / install-time transformations
ïHard to change the way people write code, so work around it

ïSeries of automated transformations for legacy code

ïFour independent, separate steps
ÅTrimming tools should cut as aggressively as possible

ÅUnderlying analysis needed by each tool is different, but will likely overlap

Improving Software Robustness and Efficiency
Architecture & Strategy for Development & Deployment

Feature
Removal

de-Layer
de-Bloat

Harden
Security

Verify and
Validate

Executable
code

TA1 TA2 TA3 TA4

TA5

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 10 of 21

TA1: Functionality Identification and
Reduction

Å Functionality non-preserving; preserving
with respect to the reduced set

Å Someone needs to specify (admin?)

Å Selecting desired features

Å Feature removal
ï RE&A

ï Feature-code association

ï Communicating desired features

Å Feature removal in dynamic languages
ï Specifying special order for dynamic language

feature removal

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 11 of 21

TA2: De-bloat/de-layer

Å Functionality-preserving

Å Compiled and dynamic languages

Å Reverse engineering & analysis (RE&A) of:

ï Binary

ï Bitcode, Bytecode, IR

ï Scripts

ï ¦ƴŘŜŎƛŘŀōƭŜ ҭ workaround w/ additional info

Å de-Bloating / de-Layering

Å Soundness and completeness

ï Dynamic can help, but what is practical?

ï Test-assisted? Need practical strategy for test
ŘŜǇƭƻȅƳŜƴǘ ŀƴŘ ŜȄŜŎǳǘƛƻƴΧ

ï Completeness is best effort

Å What is the best strategy when a cut feature /
function / etc. is invoked?

ï CƻǊ ŦŜŀǘǳǊŜ ǊŜƳƻǾŀƭ Ҧ ¢ƘǊƻǿ ŜǊǊƻǊ

ï For dLB Ҧ ΚΚΚ aŀȅōŜ ŜǊǊƻǊΣ ƻǊ ŘȅƴŀƳƛŎŀƭƭȅ ǊŜ-
enable? Think about this.

ï !ǘǘŀŎƪŜǊ ƛƴǾƻƪŜŘ ҥ 5h bh¢ ²!b¢ΗΗΗ

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 12 of 21

TA3: Addition of Security Constructs

Å It is unlikely, but security constructs may be
trimmed out by earlier steps

Å Security analysis & retrofitting

Å RE&A

Å Analysis with respect to common vulnerabilities
and known exploits

Å Beyond known stuffs: properties to assure
ï type-safety
ï others

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 13 of 21

TA4: Verification and Validation

ÅFunctionality-preserving with respect to
either full or reduced set of features

ÅValidation of functionality

ÅVerification of desired properties

ÅFormal assertions of (security) properties
ïFormal model of execution environment
ïExtracted formal model of the

program/application
ïFormal specification of properties to assure

Extracted

Built
once

Built
once

