
ONR BAA Industry Day
Late-stage Software Customization and Complexity

Reduction S&T for Legacy Naval Systems (N00014-17-S-B010)

DISTRIBUTION A. Approved for public release: distribution unlimited.

UNCLASSIFIED

28 March 2017

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 2 of 21

Introduction

• ONR office: Code 311 – Computer, Mathematics &
Information Sciences Division)

• ONR Cyber Program Officers involved:
– Mr. Gary Toth

– Dr. Sukarno Mertoguno,

– Dr. Ryan Craven

– Dr. Daniel Koller

– Mr. Ryan Gunst (clifford.gunst@navy.mil)

• All technical questions should be directed to Mr. Gunst

• All proposals should be addressed to Mr. Toth (1 May)
– Detailed instructions in the BAA

mailto:clifford.gunst@navy.mil

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 3 of 21

BAA Overview (N00014-17-S-B010)

• Title: Late-stage Software Customization and Complexity
Reduction S&T for Legacy Naval Systems

• Five Technical Areas (TA):
1. Functionality identification and reduction

2. De-bloat/de-layer (functionality-preserving complexity reduction)

3. Addition of security constructs

4. Verification and Validation

5. Supportive and complementary approaches

FY17 FY18

* Approximate

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 4 of 21

Tech Push

• Important: This is not a purely basic research BAA

• Goal of this effort is to aggressively push novel and
game-changing technology to the fleet

• In your proposals,
consider how you will
create tools that can be
transitioned to and used
by a government lab

• Univ.: this may require you
to consider including
engineering support Target	customer

Types	of	S&T	programs	within	ONR:

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 5 of 21

BACKGROUND: Modern software is exceedingly complex and bloated

- Current practices encourage it (OOP, layers of abstraction, etc.)

- Priority is to maximize code reuse
and increase programmer productivity

- One-size-fits-all feature set

SW Complexity and Bloat

Rube Goldberg machine

Complicated gadget that performs
simple tasks in indirect, convoluted ways

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 6 of 21

BACKGROUND: Modern software is exceedingly complex and bloated

- Current practices encourage it (OOP, layers of abstraction, etc.)

- Priority is to maximize code reuse
and increase programmer productivity

- One-size-fits-all feature set

SW Complexity and Bloat

 “In every application we looked at, an enormous
amount of activity was executed to accomplish
simple tasks.”

 “For example, a stock brokerage benchmark
executes 268 method calls and creates
70 new objects just to move a single date field
from SOAP to Java.”

Excerpted from:
Sevitsky et. al. (IBM TJ Watson Research Center) on framework based applications
http://lcsd05.cs.tamu.edu/papers/sevitsky_et_al.pdf

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 7 of 21

SW Complexity and Bloat

EXISTING APPROACHES:

REACTIVE

• Patching
• Signature-based

malware scanning

EXPENSIVE & OFTEN
IMPERFECT DEFEATABLE TRICKS

• Address Space Layout
Randomization (ASLR)

• Stack canaries
• Anti-ROP (ret frequency

counting, etc.)

• API guards
• Shadow stacks
• Control-flow Integrity

EXACERBATES SECURITY ISSUES:

• Widespread use of untrusted 3rd party
libraries and runtime environments
(broad attack surface)

• Security analysis is more difficult
(more code, more complexity)

• One size fits all approach enables more
robust attack planning and makes code
reuse attacks easier

WEB BROWSER

RUNTIME

LIBRARIES (…)

Webkit

JavaScript
Engine XML

CSS
Parser

LIBRARIES (…)

libXML

Openssl Etc…

libpng

Layers,
wrappers

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 8 of 21

Underlying analysis (code analysis, control-flow extraction, etc.)

RESEARCH VISION: Late-stage / install-time transformations
– Hard to change the way people write code, so work around it

– Series of automated transformations for legacy code

– Four independent, separate steps
• Trimming tools should cut as aggressively as possible

• Underlying analysis needed by each tool is different, but will likely overlap

Improving Software Robustness and Efficiency
Architecture & Strategy for Development & Deployment

Feature
Removal

de-Layer
de-Bloat

Harden
Security

Verify and
Validate

Executable
code

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 9 of 21

Underlying analysis (code analysis, control-flow extraction, etc.)

RESEARCH VISION: Late-stage / install-time transformations
– Hard to change the way people write code, so work around it

– Series of automated transformations for legacy code

– Four independent, separate steps
• Trimming tools should cut as aggressively as possible

• Underlying analysis needed by each tool is different, but will likely overlap

Improving Software Robustness and Efficiency
Architecture & Strategy for Development & Deployment

Feature
Removal

de-Layer
de-Bloat

Harden
Security

Verify and
Validate

Executable
code

TA1 TA2 TA3 TA4

TA5

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 10 of 21

TA1: Functionality Identification and
Reduction

• Functionality non-preserving; preserving
with respect to the reduced set

• Someone needs to specify (admin?)

• Selecting desired features

• Feature removal
– RE&A

– Feature-code association

– Communicating desired features

• Feature removal in dynamic languages
– Specifying special order for dynamic language

feature removal

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 11 of 21

TA2: De-bloat/de-layer

• Functionality-preserving

• Compiled and dynamic languages

• Reverse engineering & analysis (RE&A) of:

– Binary

– Bitcode, Bytecode, IR

– Scripts

– Undecidable ↔ workaround w/ additional info

• de-Bloating / de-Layering

• Soundness and completeness

– Dynamic can help, but what is practical?

– Test-assisted? Need practical strategy for test
deployment and execution…

– Completeness is best effort

• What is the best strategy when a cut feature /
function / etc. is invoked?

– For feature removal → Throw error

– For dLB → ??? Maybe error, or dynamically re-
enable? Think about this.

– Attacker invoked ← DO NOT WANT!!!

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 12 of 21

TA3: Addition of Security Constructs

• It is unlikely, but security constructs may be
trimmed out by earlier steps

• Security analysis & retrofitting

• RE&A

• Analysis with respect to common vulnerabilities
and known exploits

• Beyond known stuffs: properties to assure
– type-safety
– others

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 13 of 21

TA4: Verification and Validation

• Functionality-preserving with respect to
either full or reduced set of features

• Validation of functionality

• Verification of desired properties

• Formal assertions of (security) properties
– Formal model of execution environment
– Extracted formal model of the

program/application
– Formal specification of properties to assure

Extracted

Built
once

Built
once

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 14 of 21

Assured Transformation

Hardened Transformation

Reduced Attack Surface

• Feature Removal
– Cut unneeded functionality (admin-assist)

– Is a functionality-preserving transformation
but only for desired features

• Complexity Reduction (dLB)
– Functionality-preserving transformation for

the aggressive reduction of code
size/complexity, indirection, and layers of
abstraction

• Retrofitting Security
– Security-focused code analysis and

functionality-preserving transformations
for enhancing robustness and security

• Asserting correctness and security
– Automated and in situ verification of

validation to ensure the transformation
results are robust and secure

TA1-TA4 Recap

Feature
Removal

de-Layer
de-Bloat

Harden
Security

Verify and
Validate

Simplified
code base

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 15 of 21

TA5: Supportive and complementary
approaches

• Intended to catch research complementary to TA1-4

• Enabling or cross-cutting work that will improve the
accuracy or robustness of TA1-4 approaches

– Robust executable or binary reverse engineering tools

– Robust binary -> intermediate representation (IR)
transforms

– Methods to improve robust IR extraction

– Automated fundamental software transformations that
improve the quality & simplicity of software or reduce
attack surface of systems and software
• REMEMBER OUR FOCUS ON LEGACY

• Nothing that requires being in a VM, no IDS stuff

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 16 of 21

Advice

We recommend proposals consider the following:

• Must work without developer cooperation (legacy!)
– May not have source code available

• Be very cognizant of your approach's limitations
– Binary transformation is unsolved & very difficult
– Over-confidence without supportive evidence will not instill confidence in your

approach amongst the reviewers
– Some limitations are fundamental (e.g., undecidability), but that’s OK—we can

still make lots of progress for practical applications
– Just need to be aware of our limits and clearly define them

• The less system properties you rely on, the better
– Approaches that require VM introspection, etc. are discouraged
– Static transformations are preferred

• Automation, automation, automation!
– Semi-automated tools that aid a human are OK (e.g., an admin doing feature

cutting)

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 17 of 21

Advice (cont.)

We recommend proposals consider the following:

• Define your scope well:

– Compiled or interpreted languages? Or both?

– Which layer? Web, Apps, OS, Hypervisor, BIOS/firmware?

– None has the advantage over the other, just be upfront. Lots of stuff is used
throughout the Navy

• Think about how to avoid clashing with current development
methodologies (adds constraints for you, but reduces deployment
burden in the end)

• This is cool stuff! Have fun :)

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 18 of 21

Programmatics

• Award lengths:

– Requesting 1-3 year base + options (total NTE 5 years)

– Anticipated start dates:
• Grants: Nov 1, 2017

• Contracts: Jan 1, 2018

• Funding levels: Up to ~$1.5M/yr (smaller efforts are OK)

• IMPORTANT: Recall tech push slide…need to deliver tools
– Options can be for maturing tools, transition work w/ Navy, etc.

– Later years may involve some collaborative and integrated research with
naval environment for deliverables

– Expect to (at minimum annually) spiral code out to our ‘tool curator’

– Tool curator will help us with maturation, QA, documentation & training, etc.

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 19 of 21

Further Reading

Goals of the workshop:
• Explore issues in software/feature reduction
• Study software development & deployment

strategies for enhancing efficiencies
• Discuss how to retrofit security in compiled legacy

code when source code is and is not available
• Explore current state-of-the-art techniques for

supporting late stage software customization
(e.g., binary analysis, reassemblers, etc.)

Oct 2016 Workshop:
 A public, open audience workshop was hosted by the ACM 2016 International Conference on

Communications and Computer Security (ACM CCS 2016)
 Workshop was titled FEAST: Forming an Ecosystem Around Software Transformation
 ONR POs were involved in guiding the focus of the workshop, which examined various issues and

limitations surrounding software customization
 We recommend taking a look at the slides for the keynote which helped frame discussion
 Plug: FEAST will likely continue at CCS 2017 in Dallas, TX

https://sites.google.com/site/ccsfeast16/ ---- or, just google for “ONR FEAST”

https://sites.google.com/site/ccsfeast16/
https://sites.google.com/site/ccsfeast16/

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 20 of 21

BACKUP SLIDES

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 21 of 21

STRATEGY: Recall that transformations are at install-time
– SW developers keep same workflow

– Vanilla copy is kept (potentially on system) when system owner first
applies automated tools

– Patches are applied to vanilla copy; tools must be rerun

FAQ: How would I apply patches?

Vendor-
supplied code

Transformed code /
shadow libraries

Vendor
patch

Execute:

Maintain (potentially on system):

Furthers need for the
tools to be automated

