ONR BAA Industry Day —

Late-stage Software Customization and Complexity
Reduction S&T for Legacy Naval Systems (N00014-17-S-B010)

28 March 2017

DISTRIBUTION A. Approved for public release: distribution unlimited.

Introduction

ONR office: Code 311 — Computer, Mathematics &
Information Sciences Division)

ONR Cyber Program Officers involved:
— Mr. Gary Toth

— Dr. Sukarno Mertoguno,

— Dr. Ryan Craven

— Dr. Daniel Koller

— Mr. Ryan Gunst (clifford.gunst@navy.mil)

All technical questions should be directed to Mr. Gunst

All proposals should be addressed to Mr. Toth (1 May)
— Detailed instructions in the BAA

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 2 of 21

mailto:clifford.gunst@navy.mil

BAA Overview (N00014-17-S-B010)

* Title: Late-stage Software Customization and Complexity
Reduction S&T for Legacy Naval Systems

* Five Technical Areas (TA):
Functionality identification and reduction

2. De-bloat/de-layer (functionality-preserving complexity reduction)

3. Addition of security constructs

4. Verification and Validation

5. Supportive and complementary approaches
FY17 1 FY18

> N N0 O Y ,\Kl '
55 o e oS e e
PO P (NP o &P d
o P R G DURMCS 'a‘\'((o N R 0
AN A
* Approximate

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 3 of 21

Tech Push

* Important: This is not a purely basic research BAA

* Goal of this effort is to aggressively push novel and
game-changing technology to the fleet

* In your proposals, TypesHfB&TBHrogramswithin@NR:
consider how you will

create tools that can be

transitioned to and used e
by a government lab Focus 2 L TR

Technology Pull = 12%
(FNCs, ManTech,
TechSolutions) g

1-2 years

Quick Reaction S&T
(SwampWorks, Experimentation)

* Univ.: this may require you <305

Narrow

to CO n S i d e r i n C I u d i n g Current Fleet/Force Fleet/Force in Development Future Fleet/Force
. . TargetEustomer
engineering support

= 8%

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 4 of 21

SW Complexity and Bloat

BACKGROUND: Modern software is exceedingly complex and bloated
- Current practices encourage it (OOP, layers of abstraction, etc.)

- Priority is to maximize code reuse Self-Operating Napkin
and increase programmer productivity

- One-size-fits-all feature set

Rube Goldberg machine

Complicated gadget that performs
simple tasks in indirect, convoluted ways

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 5 of 21

SW Complexity and Bloat

BACKGROUND: Modern software is exceedingly complex and bloated

- Current practices encourage it (OOP, layers of abstraction, etc.)

- Priority is to maximize code reuse Self-Operating Napkin
and increase programmer productivity

- One-size-fits-all feature set

ﬁ “In every application we looked at, an enormous
amount of activity was executed to accomplish
simple tasks.”

= “For example, a stock brokerage benchmark
executes 268 method calls and creates
70 new objects just to move a single date field
from SOAP to Java.”

Excerpted from:
Sevitsky et. al. (IBM TJ Watson Research Center) on framework based applications
http://lcsd05.cs.tamu.edu/papers/sevitsky_et_al.pdf

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 6 of 21

EXACERBATES SECURITY ISSUES:

* Widespread use of untrusted 3 party
libraries and runtime environments

SW Complexity and Bloat

(broad attack surface)

* Security analysis is more difficult
(more code, more complexity)

* One size fits all approach enables more
robust attack planning and makes code

reuse attacks easier

EXISTING APPROACHES: e

WEB BROWSER LIBRARIES (...)

-
<j Parser
Layers,

JavaScript
Engine

wrappers

@ LIBRARIES (...)

RUNTIME (] libXML libpng

/

_

Patching
Signature-based
malware scanning

REACTIVE

\

N\

APl guards
Shadow stacks
Control-flow Integrity

EXPENSIVE & OFTEN
IMPERFECT

~

J

(Address Space Layout \
Randomization (ASLR)

e Stack canaries

* Anti-ROP (ret frequency

counting, etc.)
\ DEFEATABLE TRICKS /

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 7 of 21

Improving Software Robustness and Efficiency
Architecture & Strategy for Development & Deployment

RESEARCH VISION: Late-stage / install-time transformations
— Hard to change the way people write code, so work around it
— Series of automated transformations for legacy code

— Four independent, separate steps
* Trimming tools should cut as aggressively as possible
* Underlying analysis needed by each tool is different, but will likely overlap

e[Sl e

T

Underlying analysis (code analysis, control-flow extraction, etc.)

T

Executable
code

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 8 of 21

Improving Software Robustness and Efficiency
Architecture & Strategy for Development & Deployment

RESEARCH VISION: Late-stage / install-time transformations

— Hard to change the way people write code, so work around it
— Series of automated transformations for legacy code

— Four independent, separate steps
* Trimming tools should cut as aggressively as possible
* Underlying analvsis needed by each tool is different, but will likelv overlap

TAl

Underlying analysis (code analysis, control-flow extraction, etc.)

T

Executable
code

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 9 of 21

TA1: Functionality Identification and
Reduction

™y i {TLL HAVE A TURKEY SANDWICH ON WHITE - CANT
HAVE WHEAT - NO CHEESE, NO TOMATOES, VERY

LITTLE MAYONNAISE, SALT-FREE |F POSSIBLE, A IVE TAKEN LARGE
PIECE OF LETTUCE, AND TELL THE COOK TO TOWEL ORDERS, BUT THIS
OFF ALL EXCESS FLUID, AND COULD YOU PLEASE ONE CALLS FOR A
SUBSTITUTE APPLE SLICES FOR THE FRIES, WORD PROCESSOR!
2
o

~ Application

WHATEVER YOU DO - DON'TPUT A PICKLE ON THE

--.fl PLATE! ANDAS OF CR % OO
k
~Runtime #=% =
{|/—' .,))] www.renalnetw_ork.org
Cé“:jm Functionality non-preserving; preserving
pec. with respect to the reduced set

 Someone needs to specify (admin?)
) * Selecting desired features
Trimmed ¢ Feature removal

1 — RE&A
. — Feature-code association
thrlmmEd — Communicating desired features
‘ de Blﬂ ~* Feature removal in dynamic languages
) _debloating — Specifying special order for dynamic language

feature removal
DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 10 of 21

NRED TA2: De-bloat/de-layer

Sy
Sence & Te chuﬁ\“‘;

Functionality-preserving (\
Compiled and dynamic languages R
. : : Program 7 Program
Rever.se engineering & analysis (RE&A) of: (e ‘) ||:- ‘
— Binary I 4 i
— Bitcode, Bytecode, IR [T Specialization E-Spemallzatlon
— Scripts
— Undecidable <> workaround w/ additional info e
de-Bloating / de-Layering — |

Soundness and completeness
— Dynamic can help, but what is practical?

— Test-assisted? Need practical strategy for test
deployment and execution...

— Completeness is best effort

What is the best strategy when a cut feature /
function / etc. is invoked?

— For feature removal > Throw error

— H _ “I want you to start using the new software.
For dLB - ??? Maybe error, or dynamically re vant you to start using the new softw:
enable? Think about this.

— Attacker invoked < DO NOT WANT!!!
DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 11 of 21

It is unlikely, but security constructs may be
trimmed out by earlier steps

Security analysis & retrofitting

RE&A .
Analysis with respect to common vulnerabilities Ik okl lﬁ e
' ' i i”"A)
and known exploits | \ =
Beyond known stuffs: properties to assure NS (TR P
— type-safety b,
— others /B

IN THIS CORNER Wt HAVE
S FIRLWALLS, ENCRYPTION,
q ANTIVIRUS SOFTWARE ETC -
AND IN TiH15 CORNER,
We HAVE DAvE//

q

er, www. jklossi

:
DT Q@B

Simplified Hardened
COTS COTS

copyright 2006 john klossn

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 12 of 21

TA4: Verification and Validation

~

Brops | IBuilt /.

Aessrt| —fance
Ase orl Aane Formal Assert
= | h

“Extra / %

[
|

r -
s
.- -

I
I’
Execution
Env

sl tj/" Specs
: : once / Composition
&
* Functionality-preserving with respect to

either full or reduced set of features

Exe. Env.

]
=

* Validation of functionality 7
* Verification of desired properties o
- -
* Formal assertions of (security) properties Froven.) =
— Formal model of execution environment D

Counter R

Example ™
e TR

— Extracted formal model of the
program/application

— Formal specification of properties to assure

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 13 of 21

£ Naval R
ace OF o e Jtege
S \-_f’fp/,

() & TA1-TA4 Recap

A)

@;. =

o .
Clence & Toch “o\nﬁ

y

Feature Harden
Removal Security
_ Reduced Attack Surface) R
\ Hardened Transformation Simplified
\ Assured Transformation codelbase /
Feature Removal * Retrofitting Security
— Cut unneeded functionality (admin-assist) — Security-focused code analysis and

functionality-preserving transformations

— Is a functionality-preserving transformation
for enhancing robustness and security

but only for desired features

Complexity Reduction (dLB) * Asserting correctness and security

— Automated and in situ verification of
validation to ensure the transformation
results are robust and secure

— Functionality-preserving transformation for
the aggressive reduction of code
size/complexity, indirection, and layers of
abstraction

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 14 of 21

»_ TA5: Supportive and complementar
@M PP P Y
approaches

* Intended to catch research complementary to TA1-4

* Enabling or cross-cutting work that will improve the
accuracy or robustness of TA1-4 approaches
— Robust executable or binary reverse engineering tools

— Robust binary -> intermediate representation (IR)
transforms

— Methods to improve robust IR extraction

— Automated fundamental software transformations that
improve the quality & simplicity of software or reduce
attack surface of systems and software

« REMEMBER OUR FOCUS ON LEGACY
* Nothing that requires being in a VM, no IDS stuff

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 15 of 21

Advice

We recommend proposals consider the following:

Must work without developer cooperation (legacy!)
— May not have source code available

Be very cognizant of your approach's limitations
— Binary transformation is unsolved & very difficult

— Over-confidence without supportive evidence will not instill confidence in your
approach amongst the reviewers

— Some limitations are fundamental (e.g., undecidability), but that’s OK—we can
still make lots of progress for practical applications

— Just need to be aware of our limits and clearly define them

The less system properties you rely on, the better
— Approaches that require VM introspection, etc. are discouraged
— Static transformations are preferred

Automation, automation, automation!

— Semi-automated tools that aid a human are OK (e.g., an admin doing feature
cutting)

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 16 of 21

Advice (cont.)

We recommend proposals consider the following:

e Define your scope well:
— Compiled or interpreted languages? Or both?
— Which layer? Web, Apps, OS, Hypervisor, BIOS/firmware?

— None has the advantage over the other, just be upfront. Lots of stuff is used
throughout the Navy

* Think about how to avoid clashing with current development

methodologies (adds constraints for you, but reduces deployment
burden in the end)

e Thisis cool stuff! Have fun :)

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 17 of 21

Programmatics

* Award lengths:

— Requesting 1-3 year base + options (total NTE 5 years)

— Anticipated start dates:
* Grants: Nov 1, 2017
* Contracts: Jan 1, 2018

* Funding levels: Up to ~S1.5M/yr (smaller efforts are OK)
 IMPORTANT: Recall tech push slide...need to deliver tools

— Options can be for maturing tools, transition work w/ Navy, etc.

— Later years may involve some collaborative and integrated research with
naval environment for deliverables

— Expect to (at minimum annually) spiral code out to our ‘tool curator’
— Tool curator will help us with maturation, QA, documentation & training, etc.

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 18 of 21

ce STl Reso,
o 52,

Further Reading

Sep T
Cienge g Techno\o%

Oct 2016 Workshop:

s A public, open audience workshop was hosted by the ACM 2016 International Conference on
Communications and Computer Security (ACM CCS 2016)

Workshop was titled FEAST: Forming an Ecosystem Around Software Transformation

ONR POs were involved in guiding the focus of the workshop, which examined various issues and
limitations surrounding software customization

We recommend taking a look at the slides for the keynote which helped frame discussion

Plug: FEAST will likely continue at CCS 2017 in Dallas, TX

X/ X/
0‘0 0‘0

X/ X/
0‘0 0‘0

Four Horsemen of

Late Stage Customization Goals of the workshop:

» Explore issues in software/feature reduction

e Study software development & deployment
strategies for enhancing efficiencies

Discuss how to retrofit security in compiled legacy
code when source code is and is not available

* Explore current state-of-the-art techniques for
supporting late stage software customization
(e.g., binary analysis, reassemblers, etc.)

Removal of

unneeded features

* Admin assisted removal
of unneeded features

+ Functionality preserving -
transformation only for Feature] [de-Layer

desired features Removal de-Bloat

Reduced Attack Surface

Complexity

reduction (dLB)

* Functionality-preserving
transformation for the Retrofitting security
aggressive reductionof |, <. facused code analveic and function
program code,

indirection, and)
abstraction Asserting correctness and security

Hardened Transformation

Assured Transformation

https://sites.google.com/site/ccsfeastl6/ ---- or, just google for “ONR FEAST”

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 19 of 21

https://sites.google.com/site/ccsfeast16/
https://sites.google.com/site/ccsfeast16/

BACKUP SLIDES

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 20 of 21

FAQ: How would | apply patches?

STRATEGY: Recall that transformations are at install-time
— SW developers keep same workflow

— Vanilla copy is kept (potentially on system) when system owner first
applies automated tools

— Patches are applied to vanilla copy; tools must be rerun

Maintain (potentially on system):

1 Furthers need for the Q
tools to be automated

DISTRIBUTION A. Approved for public release: distribution unlimited. Slide 21 of 21

