Nano-engineered Materials

This program portfolio covers work both in basic and applied research areas. The primary focus of the basic research is on understanding the scientific phenomena that defines the unique properties of structural and multifunctional nanomaterials. A special emphasis is on identifying material systems and processes enabling the assembly of these materials at mesoscale and beyond, while preserving and potentially enhancing the material properties initially defined at the nanoscale. There is a specific interest in understanding the limits imposed by the physical and chemical characteristics of a material in creating these nanomaterial ensembles with desired properties.

The applied research program is aimed at developing and optimizing nanomaterials systems for specific naval applications. In particular, this program area seeks new opportunities for nanomaterial-based technology solutions by integrating nanomaterials with conventional materials. The approach will create new material systems with enhanced properties and functionalities.

Research Concentration Areas

The basic research covers multiple topics in the physics, chemistry and optics of materials including:

  • Defects dynamics during field-enhanced sintering of ceramics
  • Photothermal reaction bonding of non-oxide ceramics
  • Metamaterials for photonics
  • Materials assembled from low-dimensional nanostructures, such as polymer chains and monoatomic sheets

The long-term basic research goals are realization of low-temperature ceramics fabrication and therefore less expensive ceramic materials; techniques enabling advanced manufacturing processes, including additive manufacturing; and scaled-up assembly of multifunctional materials. The work supported in this area is multidisciplinary in nature and combines approaches in both experimental and computational science.

The applied research projects are focused on developing advanced synthesis and manufacturing methods, including repair tools. The work supported in this area covers approaches in a multitude of engineering sciences. Example projects include:

  • Nanometal and alloy coatings for in situ repair of Cu-Ni (Copper-Nickel) tubing in Navy heat exchangers
  • Graphene-reinforced polymer matrix composites suitable for extrusion-based manufacturing
  • Laser-assisted, field-enhanced sintering of ceramics to be incorporated in additive manufacturing -based repair tools

Research Challenges and Opportunities

Basic Research:

  • Electric field -enhanced sintering of oxide and non-oxide ceramics
  • Precursor-based, photo-thermal process for ceramics
  • Functional and robust optical coatings
  • Inorganic-organic hybrid nanomaterials
  • Mesoscale behavior of nanoassemblies
  • Metrology of nanomaterial assemblies
  • Hierarchical 3D surfaces

Applied Research:

  • Mechanics of nanocrystalline alloy coatings
  • Alloy chemistry of heterointerfaces
  • Repair technologies utilizing nanomaterials
  • Laser-assisted, field-enhanced sintering of ceramics
  • Manufacturing of transparent armor

Program Contact Information

Name: Dr. Antti Makinen

Title: Program Officer

Department: Code 332

Email for Questions: antti.makinen@navy.mil


How to Submit

Submit white papers, QUAD charts and full proposals for contracts to this email address: ONR Code 33 Research Submissions

Follow instructions within BAA for submission of grant proposals to grants.gov website.

* Some pages on this website provide links which require a plug in to view.