

This report is a product of the United States Naval Research Advisory
Committee (NRAC) Panel on SOFTWARE INTENSIVE SYSTEMS. Statements,
opinions, recommendations, and/or conclusions contained in this report are
those of the NRAC Panel and do not necessarily represent the official
position of the United States Navy and United States Marine Corps, or the
Department of Defense.

03/01/2006 Group Study March 2006- July 2006

Software Intensive Systems

E. Horvitz, D.J. Katz, R.L. Rumpf, H. Shrobe,
T.B. Smith, G.E. Webber, W.E. Williamson,
P.H. Winston, James L. Wolbarsht

Naval Research Advisory Committee
875 Randolph St.
Arlington, VA 22203-1993

NRAC 06-3

Assistant Secretary of the Navy (Research, Development and
Acquisition)
1000 Navy Pentagon
Washington, DC 20350-1000

ASN(RD&A)

DISTRIBUTION STATEMENT: Approved for public release; distribution is unlimited.

 Consistent production of quality, affordable software. Other countries have surpassed the US in
computer manufacturing and much software production is now outsourced abroad. Recommend that DoN create a
software acquisition specialty, mandate basic schooling for software acquisition specialists, close certain acquisition
loopholes that permit poor development practices, and promote the careful use of existing technology and the
development of gap-filling technology. Additionally, recommend that DoN invest in software engineering,
particularly as it complements commercial industry developments and promotes the application of systems
engineering methodology. Central recommendation is a three-step mobilize-transform-consolidate process, starting
with project-directed RESET teams (Rapid Evolution of Software Engineering Technology) inserted on-site at
contractor locations, continuing with a development of Naval Software System Center, and evolving into a larger
Naval software organization.

Software, RESET, globalization, FORCEnet, acquisition, training, computers, Ultra large systems, Unified
Modeling Language, Single integrated air picture, Single lines of code, MSLOC, MDA, MDD, UARC

UNCLAS UNCLAS UNCLAS UU 86

Dr. Sujata Millick

(703) 696-4875

i

ii

This page intentionally left blank

iv

This page intentionally left blank

1

Table of Contents

Executive Summary ...3

Terms of Reference..5

Study Panel and Sponsor ...7

Briefings and Visits..9

Joint Vision ..13

More Capability and Lower Cost...15

The Playing Field...17

Human Resources ..19

Globalizing of Software and Hardware ...23

Spending ..25

Impact of Rework Costs (FY 2003)...27

Size of Typical Naval Combat Systems...29

History of Study...31

Our Central Recommendation: Structural Innovation ...33

Representative Findings...35

Leadership Recommendations ...41

Acquisition and Practice Recommendations ...43

Recommendation Focus: The User Requirement Loop...49

Naval S&T Program Recommendations..51

Assessment...55

Step One: Rapid Evolution Software Engineering Teams...57

Step One: Implementation ...59

Step Two: Naval Software System Center...61

Step Two: Implementation...63

Step Three: Consolidation..65

Risks and Challenges: Steps One-Three ..67

Summary ..69

Terms of Reference..A-1

ASN Memo ..B-1

Acronym List ...C-1

2

3

Executive Summary
Purpose of study

The consistent production of quality, affordable software has become enormously
important, because information dominance has become a cornerstone of national defense.
Unfortunately, abundant examples demonstrate that DoN and DoD software programs are
often late, over budget, and under performing.

All this is especially worrisome in light of the globalizing of competence in
information technology. Other countries have surpassed the United States in computer
manufacturing and much software production is now outsourced abroad.

On the other hand, emerging technologies and processes, such as model-driven design
and software product lines, offer promise, inviting development and selected deployment.
The purpose of this study was to assess the state of the art in software development, offer
deployment suggestions, and identify S&T needs and opportunities.

Findings and general recommendations

Overall, we saw great benefits to be gained from emerging practices; including lower
cost, greater security, more reliability, increased interoperability, easier maintenance, better
compliance with requirements, more agile evolution, and more openness.

Such benefits led us to several recommendations focused on DoN acquisition
management, systems engineering, training, education, and business practices. In the small,
we recommend that the DoN create a software acquisition specialty, mandate basic schooling
for software acquisition specialists, close certain acquisition loopholes that permit poor
development practices, and promote the careful use of existing technology and the
development of gap-filling technology.

We also recommend DoN investment in software engineering, particularly as it
complements commercial industry developments and promotes the application of systems
engineering methodology. Such investment is needed, even though there is a great deal of
commercial investment, because much commercial practice requires adaptation before it is
useful to the DoN. For example, the practice of the nightly build, commonplace in industry,
is relatively rare in the DoN because the real-world exercise of a current prototype, all the
way out to firing, say, a missile, is impractical.

As for emerging software acquisition tools for specifying, bidding, and engineering
software-intensive systems, we found promise but not full maturity. Specifying and bidding
tools are emerging but none are mature enough to seriously evaluate. On the other hand,
some software engineering tools are ready for use in selected applications as long as they are
matched to problems. Caveat emptor, however, as there is much zealotry out there, as well
as misleading claims, such as for automated code generation where claims are made that “no
coding is done.” In reality, tools associated with such claims depend on users writing code in
so-called action languages to define semantics and specify procedures. Worse yet, users
often find themselves forced to escape to a traditional programming language such as C or
C++ to fully define necessary semantics.

4

The key recommendation: a three-step plan

In the large, our central recommendation is a three-step mobilize-transform-
consolidate process, starting with project-directed RESET teams (Rapid Evolution of
Software Engineering Technology) inserted on-site at contractor locations, continuing with a
development of Naval Software System Center, and evolving into a larger Naval software
organization. These steps will help suffuse the DON with today’s best tools and practices
and those tools and practices that emerge going forward.

Missions of the RESET teams are:

• Complete user-requirements loop

• Promote use of system engineering tools, policies and practices

• Champion best-practice software methodology emphasizing commonality,
evolution, adaptation, reuse, reliability, interoperability, security, and rapid
response to changing defense needs

• Identify open systems needs and ensure compliance

• Recommend contract incentives

• Monitor progress and sustain support

Missions of the Naval Software System Center are:

• Institutionalize and staff RESET teams

• Build models and assist in building models

• Ensure maximum DoN commonality

• Manage and staff Independent Expert Reviews

• Recommend acquisition policy

• Manage innovation through programs, such as SBIRs.

Embarking on this three-step plan involves risks and challenges; but, because the
DoN spends on the order of 1.7B/year on software rework, there is ample opportunity for a
huge return on investment. If by step two of the plan, the Navy saves just 10% of that
rework cost, the plan will have paid for itself 10 times over.

5

 The Terms of Reference

• Review relevant DOD and government programs
• Review industry tools, practices, and standards
• Identify potential benefits of best practices
• Recommend changes in Naval acquisition

management, systems engineering, training,
education, and business practices

• Suggest S&T investment
• As appropriate, evaluate emerging tools for

specifying, bidding, and engineering software-
intensive systems and suggest strategies for use
across multiple organizations

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

The Terms of Reference

The Terms of Reference asked us to review relevant DoD and government programs,
which led us to absorbing briefs from the programs listed on the Briefings slide. Those
briefings enabled us to review a variety of much-talked about tools, practices and standards,
including those associated with labels such as Product Lines, Model Driven Development,
Service Oriented Architectures and the like.

Overall, we saw great benefits from emerging practices, including lower cost, greater
security, more reliability, increased interoperability, easier maintenance, better match to
requirements, more agile evolution, and more openness.

Such benefits led us to several suggestions focused on DoN acquisition management,
systems engineering, training, education, and business practices. In the small, we
recommend that the DoN create a software acquisition specialty, mandate basic schooling for
software acquisition specialists, close certain acquisition loopholes that permit poor
development practices, and promote the careful use of existing technology and the
development of gap-filling technology. In the large, our central recommendation is a three-
step process, starting with project-directed rapid evolution teams, continuing with a
transformation center, and evolving into something larger. If implemented, these actions will
help suffuse the DoN with the best of today’s practices and those that emerge going forward.

We also recommend DoN investment in software engineering, particularly as it
complements industrial developments and promotes the application of systems engineering
methodology. Such investment is needed, even though there is a great deal of commercial
investment, because much commercial practice requires adaptation before it is useful to the
DoN. For example, the practice of the nightly build, commonplace in industry, is relatively

6

rare in the DoN because for many DoN systems, the real-world exercise of these builds is
impractical (such as the firing of a missile)

7

Study panel and sponsor

The Panel included experts in the subject matter, the defense industry, commercial
practice, and the DoN. Some of these were NRAC members and NRAC associates; others
were brought onto the panel to complete the set of desired competencies. The three
executive secretaries of the Panel provided insight based on their long history of involvement
in DoN work.

• Chair - Dr. Patrick L. Winston
Professor of Computer Science,
MIT

• Co - Chair - Ms. Teresa B. Smith
Director Strategy, SD&T, Northrop
Grumman Electronic Systems
Sector

• Dr. Eric Horvitz
Principal Researcher and Research
Area Manager, Microsoft

• VADM Douglas J. Katz
USN (Ret.), Consultant

• Mr. Richard L. Rumpf
President Rumpf Associates
International

• Dr. Howard Shrobe
Principal Research Scientist, MIT

• Dr. George E. Webber
Consultant

• Dr. Walton E. Williamson, Jr.
Professor and Chair Department of
Engineering Texas Christian
University

• Mr. James L. Wolbarsht
President & CEO, DEFCON®, Inc.

Study Sponsors:
• RADM Michael Frick - PEO - IWS
• Mr. Carl Siel - CHENG

Executive Secretaries:
• Dr. William Bail, MITRE
• Ms. Cathy Ricketts, PEO - IWS
• Mr. Fred Heinemann, EDO

Study panel and sponsor

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

8

This page intentionally left blank

9

• Briefings, programs and defense industry

– Naval Focus: PEO-IWS; DASN-IWS; LMRS; Aegis; DD(X); FORCEnet;
ARCI

– Army Focus: FCS, SW Improvement Program (Bolton)
– Joint Focus: SIAP, JSF; JTRS; GIG
– OSD/Agency Focus: Missile Defense Agency, NSA, Quadrennial Defense

Review, NII/GIG

• Other briefings
– Government: GSA
– FFRDC: SEI
– Industry: Raytheon, Microsoft, Lockheed Martin

• Site visits:
– SIAP Program Office
– GIG Testbed (JHU/APL)
– Microsoft Corporation

Briefings and visits

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Briefings and visits

We heard many briefs that collectively provided insight into problems and
opportunities. These briefs were provided by representatives from the DoN, other services,
other government agencies, the defense industry, commercial industry, the Software
Engineering Institute and the MITRE Corporation. (The later two both being Federally
Funded Research and Development Centers (FFRDC)). The list of presentations follows:

Commercial Practices Presentations

• Systematic Software Development at Microsoft--Jim Larus, Research Area
Manager, Microsoft Research

• Formal Specification and Program Analysis Tools--Manuvir Das, Researcher,
Center for Software Excellence

• Static Analysis of Device Drivers via Software Model Checking--Tom Ball,
Principal Researcher, Microsoft Research

• The Spec# Programming System--Rustan Leino, Senior Researcher, Microsoft
Research

• Singularity--Galen Hunt, Principal Researcher, Microsoft Research

• Model Based Testing--Wolfram Schulte, Research Area Manager, Microsoft
Research

• Windows Vista Engineering: Delivering a High Quality OS--Amitabh Srivastava,
Corporate Vice President, Windows Core OS

• Zap – Automated Theorem Proving for Program Analysis--Madan Musuvathi,
Researcher, Microsoft Research

10

• Software Factories--Jack Greenfield, Software Architect, Visual Studio, US-
Enterprise Tools Management

• SDL and Common Criteria Discussion--Eric Bidstrup, Group Manager, US
Security Engineer and Communications

• SOA and Web 2.0 Discussion--Harry Pierson, Architect, Developer and Platform
Evangelism

• Microsoft Dynamic Systems Initiative--John Wilson, Architect Windows
Management

• Windows Lifecycle--Chris Lindstrom, Group Program Manager, Windows
Fundamental Practices

• Productivity Visions: The Microsoft Center for Information Work--Apollo
Fuhriman, Tour Host, Microsoft Center for Information Work

• MDA at Raytheon for Real-Time Systems--Terri Potts, Raytheon

Government Program Presentations

• Aegis--Reuben Pitts & CDR John Ailes, Program Executive Office, Integrated
Warfare Systems

• Long Term Mine Reconnaissance (LMRS)--CAPT Paul Imes

• Joint Tactical Radio System (JTRS)--Richard North, JPEO JTRS & Leonard
Schiavone, MITRE

• Single Integrated Air Picture (SIAP)--CAPT Jeff Wilson

• Single Integrated Air Picture (SIAP) and Model Driven Architecture--Dr. Michael
Bienvenu, MITRE, Technical Lead of SIAP Architecture Maintenance

• Single Integrated Air Picture (SIAP) Site Visit, Crystal City--CAPT Jeff Wilson,
JSSEO

• GIG Infrastructure--Ken Schmidt/John Piorkowski, APL/JHU

• Navy Open Architecture--CAPT James Shannon, Program Executive Office
Integrated Warfare Systems

• Missile Defense Agency – Advanced Battle Manager / Global Integrated Fire
Control (ABM/GIFC)--Dr. Butch Caffell

• Acoustic Rapid COTS Insertion / Advanced Processor Build (ARCI/APB)--Dr.
Bob Zarnich

• Future Combat System (FCS)--LT COL Dave Basset, PM SW Integration

• Future Combat System (FCS)--Mr. Dave Emery & Mr. Bell

• DD1000--CAPT. Syring

• Joint Strike Fighter (JSF)--Glenn Willis, Capt. Hambli, JSF Program Office,

11

• FORCEnet Overview--Craig Madsen/Tech Dir SPAWAR 05

• Service Orientation: An Enabler of Net Centric Operations--Brad Mercer,
MITRE, Lead Enterprise Systems Architect for Future FORCEnet

• Army Ultra Light Systems (ULS)--Dr. Jim Linnehan

• GIG Test Bed at APL/JHU--Robert Holland

Other Government

• NAVAIR Software Engineering--Tony Guido, NAVAIR SSC

• Model Driven Architecture--Mr. Noel Longuemare

• World Class Modeling Initiatives--Ms. Sunny Conwell, N81

• Software Producability Initiative--Rob Gold, DDRE

• DASN IWS--Dr. Wayne Meeks, Executive Director, Program Executive Office,
Integrated Warfare Systems

• Software Process Improvement Initiatives--Mr. Carl Siel, DASN CHENG

• Quadrennial Defense Review (QDR) – Command & Control--CAPT Gary Stark

• Global Information Grid (GIG)/NII--Ms. Priscilla Guthrie, NII

• Army Enterprise Information Technology--Honorable Claude Bolton, Assistant
Secretary of the Army (Acquisition, Logistics and Technology)

• National Security Agency (NSA)--Mr. Rob Case, MITRE

• DDR&E Software Research Plans--Rob Gold, DDR&E, Associate Director for
Software and Embedded Systems

• Use of Model Driven Architecture (MDA) at GSA--George Thomas, GSA OCIO
IAA Chief Architect

• Dr. Michael McDonald, Sandia National Labs

• Defense Science Board (DSB) 2006 Summer Study on Information Management
for Net-Centric Operations--LTC Scott Dolgof

• Acquisition Center of Excellence (ACE) History--Page Glennie, DASN C4I

• Defense Modeling & Simulation Office (DMSO)--Capt. Mike Lilientahl

• Software Technology Service Center (STSC)--Dan Bennett

12

This page intentionally left blank

13

 Joint Vision 2020

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Joint Vision 2020

The importance of information dominance is widely recognized, as suggested by this
graphic from the Joint Vision 2020 policy statement. Of course the ability to build large
software systems, with all the usual properties, is an obvious prerequisite to information
dominance. Thus, software problems directly block the forward movement of a central
component of defense strategy in the 21st century.

14

This page intentionally left blank

15

 More capability and lower cost

• Software enables new capabilities, such as:
– Information gathering, fusion, and distribution
– Coalition collaboration
– Intelligence gathering

• Software advantages relative to hardware
– Zero cost replication
– Greater flexibility
– Easier upgrade
– Superior SWAP (Size, Weight, and Power)

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

More capability and lower cost

Why is software so important and central to our strategic vision?
The obvious reason is that software is the great enabler, making possible operations

that otherwise would be inconceivable.

The subtle reason software is important is that software often can do what hardware
can do, in principle, but software can do it at much lower cost and with other superior
qualities. Examples include the growing use of software in synthetic aperture radar and
multi-function antennas.

Another much talked about example is the idea of a software radio, capable of
providing functions that otherwise would have to be realized with a cartload of capacitors,
inductors, and other electronic paraphernalia. With this context, accordingly, JTRS (Joint
Tactical Radio System), a program to replace the hardware-intensive radios currently in use
with software-based radios, should be a great success. However, somehow the JTRS
program has become the poster child for software headaches. In a sense, the JTRS problems,
in the face of the promise of the software radio idea, are testimony to the need for this study.

16

This page intentionally left blank

17

 The playing field
• “…the continued development and proliferation of

information technologies will substantially change the
conduct of military operations. These changes in the
information environment make information superiority a
key enabler of the transformation of the operational
capabilities of the joint force and the evolution of joint
command and control… Information superiority is the
critical enabler of the transformation of the Department
…”

From Joint Vision 2020
General Henry Shelton, CJCS, 2000

• “Key to achieving this full spectrum dominance will be the
ability of U.S. forces to acquire information superiority
and the technologies that enable it.”

Dolores Etter, DDR&E, DUSDA&T, 2000

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

The playing field

For at least a thousand years, great warfare strategists were adherents of the notion of
“know thy enemy.” In more modern times, strategic and battlefield intelligence gathering and
dissemination were keys to successful battles and campaigns. Only in the digital age,
however, has the notion of information superiority been understood as the critical enabler for
full spectrum dominance.

In the early 1990s, the idea of information superiority appear in numerous student
papers at the Naval War College. By 1997 Joint Warfare Science and Technology Plan, DoD
and the Joint Staff called for the goal of information superiority to enable rapid conflict
resolution.

The CJCS (Chairman of the Joint Chiefs of Staff) Joint Vision 2020 focused attention
on full spectrum dominance – achieved through the “interdependent application of dominant
maneuver, precision engagement, focused logistics, and full dimensional protection.
Attaining that goal requires the steady infusion of new technology and modernization and
replacement of equipment. However, material superiority alone is not sufficient. Of greater
importance is the development of doctrine, organizations, training and education, leaders,
and people that effectively take advantage of the technology.”

The evolution of these elements over the next two decades will be strongly influenced
by the continued development and proliferation of information technologies, and will
substantially change the conduct of military operations. These changes in the information
environment make information superiority a key enabler of the transformation of the
operational capabilities of the joint force and the evolution of joint command and control.

Testimony to the importance of information dominance is easy to find. The quotes
above are representative. Note, however, that both come from the heady and optimistic time,

18

near the peak in the internet boom, when the United States was the undisputed leader in
information technology. Today, the United States has slipped in many areas it previously
dominated.

19

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

26,000

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Human resources
The pipeline is running dry

May 2006 Computing Research News

US CS/CE Undergraduate Majors

S
tu

de
nt

s

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Human resources - The pipeline is running dry

Every year, the Computing Research Association conducts the Taulbee Survey which
analyzes the enrollment, production, and employment of computer science students and
graduates. This survey has been performed annually since 1974. Recent reports are
available on-line at http://www.cra.org/statistics/

According to the survey, enrollment in computer science/software engineering
courses of study has been on the average decreasing since the mid-1980s. While the number
of Bachelors degrees conferred had risen slightly between 1996 and 2000, the number of
degrees experienced a 13% decrease in academic year 2004-2005 when compared to the
previous year. In addition, the number of newly declared CS/CE undergraduates has been
decreasing since 2000, suggesting that the supply of fresh CS/CE graduates will continue to
decline. In the mid-1980s, approximately 5% of incoming freshmen chose CS/CE as their
declared major. This level dropped in the early 1990s to approximately 1.5%, then rose to
about 3.5% in 2000. Currently, the proportion is below 1.5% and steadily declining.
[Source- Computing Research News, May 2006]

One possible event that may have contributed to this decline is the reduction in IT
jobs that occurred after the 2001 recession when, between 2001 and 2004, the number of IT
jobs shrank from about 2.1 million to just over 1.7 million. This trend has reversed since
2004, with the job growth currently at about 2%. This is in contrast, however, to 1999 when
the job growth was around 15%.

20

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

Pe
rc

en
t c

ha
ng

e
in

 IT
 e

m
pl

oy
m

en
t

Year

Percent change in IT employment between 1991 and 2005

With the increasing dependence on software-based systems and their growing

complexity and size, future needs for trained staff will increase significantly. However, the
shrinking pool of trained talent will place any plans for future system development in
jeopardy.

In contrast to the shrinking supply, future demands for computing professionals are
expected to be significant, with almost 150,000 openings presently available. However, with
the current population of computer professionals and the shrinking enrollments at
universities, the supply of labor to satisfy this demand will fall short by nearly 90,000 people.
In contrast, the supply of professionals in the biological/agricultural sciences is expected to
be at 100,000, while the openings in this field will be at about 10,000, resulting in many
graduates changing careers. (source – Computing Research Association
http://www.cra.org/govaffairs/blog/projected_job_openings.pdf)

0

20000

40000

60000

80000

100000

120000

140000

160000

Computer Sciences Biological/Agricultural
Sciences

PhD

Master's

Bachelor's

Projected Job
Openings

Demand

Supply

Demand

Supply

N
um

be
r o

f p
eo

pl
e

21

The implication is that the ability to hire sufficient professional staff to develop future
systems will be a significant challenge. Candidates will likely select jobs based on salary and
attractiveness of the position. DoD programs will have to compete with non-DoD business
entities, such as web design, corporate information systems, and other commercial activities.
The effect will be felt in the ability to develop new systems. If staff can be hired at all, the
salaries for this staff may be significantly higher than what is being paid currently. The risk
is that the standards for such staff may be lowered simply to hire more people at salaries in
line with past experience.

To mitigate such risks, there are few options available. One is to increase the
productivity of staff to achieve a multiplicative effect. Such productivity increases could be
achieved through the use of automated tools, transferring the effort from human to machine,
and allowing the human to focus on the more complex aspects of the system development.
An ancillary benefit is that by relying on tools to perform many of the stages of development,
the likelihood of defect introduction will be reduced.

Another option is to recognize that not all software engineers are created equal. It has
been observed that the range of capability among engineers can be as large as 100-1 [Source:
“Not all Programmers Are Created Equal,” G. Edward Bryan, IEEE, 1994]. By focusing on
hiring the most capable in this range, the effect will be to achieve dramatic increases in
productivity. However, as the demand for such talent increases, their cost is likely to rise
dramatically. The current approach used by companies when hiring IT staff is to narrowly
focus on the specific skills needed for the job. Whether this approach is successful at
identifying the most capable of programmers is debatable. In particular, whether this
approach is able to identify those software developers whose training allows them to
continue to grow rather than being locked into specific, end-of-life technologies, is not clear.

22

This page intentionally left blank

23

 Globalizing of Software and Hardware

• 470,000 IT jobs outsourced overseas, ~25%
• 80% of 300mm fabrication factories are overseas

Source: Reed Electronics Research, Yearbook of World Electronics Data

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

1990 1995 2000 2004

$U
S

m
ill

io
ns

Leading computer producers by location

China

US

Japan

Globalizing of Software and Hardware

In order to fulfill the growing needs, companies have been exploiting global
resources, outsourcing their IT jobs to other countries such as India, Russia, and China, as
well as making use of the limited number of H-1B visas that have been made available. With
offshoring, not only are the labor rates lower, but in many of these countries, there are ample
supplies of well-educated, trained people. It is estimated that approximately 470,000 IT jobs
have been offshored. Since there are currently approximately 1.8 million IT-related jobs in
the U.S., the proportion of offshored jobs represents about 25% of U.S. employment.
[Source: Snigdha Srivastava and Nik Theodore. Information Technology Labor Markets:
Rebounding, But Slowly. Center for Urban Economic Development, University of Illinois at
Chicago. June 2006] Due to security concerns, however, the offshoring option is largely
unavailable to DoD programs, except perhaps under tightly controlled conditions. An
important side-effect of this trend is that part of the IT experience and talent base is moving
off shore.

Note that the accuracy for many of these statistics is not guaranteed. The data
collection processes vary among the researchers, and the interpretation of what an IT job is
remains inconsistent across the various studies. Nonetheless, the general trend indicated is
consistent across studies.

Likewise, for computer manufacturers, the trend towards offshoring has been
significant. In a three year period, the proportion of 300mm fabrication plants in the U.S. has
decreased from 30% worldwide to 20% [Source: Defense Science Board Task Force Report
On High Performance Microchip Supply February 2005]. Additionally, the U.S. is no longer
the dominant producer of computers. China has moved from being an insignificant source of

24

computers to being the largest source in the world, having surpassed the U.S. in 2003. Such a
trend increases the dependence of the U.S. on foreign manufacturers.

25

 Spending

$28.7 $28.2 $27.3 Total

$1.1 $0.9 $1.0 Other IT

$14.8 $15.0 $14.6

Shared infrastructure
and information
assurance activities

$7.8 $7.0 $6.4

Warfighting and
national security
systems

$5.0 $5.2 $5.4 Business applications

200520042003

(amounts in billions)

Fiscal 2005 Defense Budget Proposal,
spending by category

$28.7 $28.2 $27.3 Total

$1.1 $0.9 $1.0 Other IT

$14.8 $15.0 $14.6

Shared infrastructure
and information
assurance activities

$7.8 $7.0 $6.4

Warfighting and
national security
systems

$5.0 $5.2 $5.4 Business applications

200520042003

(amounts in billions)

Fiscal 2005 Defense Budget Proposal,
spending by category

$28.8 $28.2 $27.3 Total

$10.3 $10.4 $10.3 DOD

$6.4 $5.7 $5.2 Air Force

$6.6 $6.6 $5.6 Navy

$5.4 $5.5 $6.2 Army

200520042003

(amounts in billions)

Fiscal 2005 Defense Budget Proposal,
spending by service

$28.8 $28.2 $27.3 Total

$10.3 $10.4 $10.3 DOD

$6.4 $5.7 $5.2 Air Force

$6.6 $6.6 $5.6 Navy

$5.4 $5.5 $6.2 Army

200520042003

(amounts in billions)

Fiscal 2005 Defense Budget Proposal,
spending by service

app. $21B for NSS
(incl combat systems)

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Spending

Since 2003, DoD spending on IT has increased from $27.3B to $28.7B, an increase of
5%. The spending on warfighting and NSS, however, has increased by more than 21%.
During this same period, DoN spending increased by almost 18% on all IT systems.
DoD spending on software

The following table summarizes the IT-related spending in the Defense Budget for
the years 2003 to 2005, as provided by John Stenbit [Source: “Stenbit explains DoD IT
spending to lawmakers”. Government Computing News. 03/22/04]. The shaded cells
represent those expenditures relating to warfighting systems as opposed to pure IT systems.

Fiscal 2005 Defense Budget Proposal,
spending by category
(amounts in billions)

2003 2004 2005
Business applications $5.36 $5.21 $5.03
Warfighting and
national security
systems

$6.38 $7.01 $7.78

Shared infrastructure
and information
assurance activities

$14.57 $15.05 $14.83

Other IT $1.01 $0.96 $1.08
Total $27.33 $28.24 $28.72

26

From 2003 to 2005, DoD spending on IT increased from $27.3B to $28.7B, an
increase of 5%. The spending on warfighting and National Security Systems (NSS),
however, has increased by more than 21%, from $6.38B to $7.78B.

During this same period, DoN spending increased by almost 18% on all IT systems.

Fiscal 2005 Defense Budget Proposal,
spending by service
(amounts in billions)

2003 2004 2005
Army $6.23 $5.51 $5.45
Navy $5.59 $6.63 $6.59
Air Force $5.25 $5.71 $6.40
DoD $10.27 $10.40 $10.28
Total $27.33 $28.24 $28.72

According to the Government Accountability Office (GAO) and other sources, of the

$21B spent by the DOD on combat systems (including infrastructure investments as well as
NSS), as much as 40% is estimated to be attributable to rework costs, defined as effort
consumed by fixing problems found in the system during development and test.

If we estimate the Navy’s spending for NSS to be approximately $4.3B, the cost of
rework to the Navy would be about $1.7B. This amount of rework represents a significant
impact on the ability to field necessary capabilities, since the funds are diverted from forward
engineering to fixing latent problems in the systems.

27

 Impact of rework costs (FY2003)

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

0

5

10

15

20

25

$
B

ill
io

ns Cost of rework
(40% of total)

All DOD Navy

$1.7B
rework

Cost of forward engineering

Impact of rework costs (FY2003)

With the 40% estimate for rework costs, of the $21B spent by the DoD on combat
systems (including infrastructure investments as well as NSS), the actual investment effect
was equivalent to app. $13B, the rest being consumed by fixing problems found during
development and test.

For the Navy, with the spending having been about $4.3B, the actual investment
totaled approximately $2.6B, with the remaining $1.7B being attributed to rework.

If the amount of rework could be reduced, the primary result will be a cost avoidance,
allowing the development of additional capabilities for the same overall investment. A
secondary but important effect would also be a reduction in the need for increasing numbers
of IT staff, thereby avoiding the challenge of finding sufficient numbers of computer-literate
candidates.

For the DoN, a reduction of rework on the order of 10% (a modest goal) should result
in a cost avoidance of about $170M. Note that it is not likely that the proportion of rework
will ever be reduced to zero – with software development being primarily an R&D activity, it
is not realistic to expect that the introduction of defects will be eliminated. However, with
the improvement of development processes, experience has shown that a significant
reduction in defects can be realized [source: http://www.thedacs.com].

28

Forward
engineering

Rework

Cost
avoidance

0

1

2

3

4

5

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

% reduction in rework

$
B

ill
io

ns

A reduction of 10% of rework will result
in a cost avoidance of $170,000,000

29

 Size of typical Naval combat systems

Background

Context

Structure

Findings

Rcmds

Three steps

Summary 0

5

10

15

20

25

Aegis B/L 7.1R DDG 1000 F/A 18 E/F JSF

M
ill

io
ns

 o
f l

in
es

 o
f c

od
e

(M
LO

C
)

Surface Ship
Combat Systems

Aircraft Systems

Growth

Gr
ow

th

Today
Future

Today

Future

System size

The reliance of the DoD on software to provide functionality in our systems has
increased significantly. For example, the size of the DDG 1000 combat system is expected
to be almost 1.8 MSLOC larger than Aegis Baseline 7.1R, a 36% increase. This growth
parallels commercial industry where a similar trend has been observed. This growth is
expected - due to its nature, software has enabled us to achieve levels of capability and
performance previously unattainable, and perhaps impossible to realize in hardware.
However, as the systems get larger and as they become more complex, the challenge of
developing them grows significantly. Not unexpectedly, corresponding with the growth, we
have seen an increase in cost and schedule overruns.

This growth has resulted in an increased demand for skilled software professionals as
well as software system engineers that can decompose complex systems and defined
requirements. As systems become more and more complex, this demand will continue to
increase, for both DOD and industry sectors.

30

This page intentionally left blank

31

 History of study

• DSB Task Force on Military Software (1987):
“Many previous studies have provided an
abundance of valid conclusions and detailed
recommendations. Most remain unimplemented.”

• DSB Task Force on Defense Software (2000):
“The Task Force reviewed six major DoD-wide
studies that had been performed on software
development and acquisition since 1987. These
studies contained 134 recommendations, of which
only a very few have been implemented.”

Is anybody listening?

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

History of study

Reports of the Defense Science Board over a twenty year period identify software
problems as a favorite topic of study. These reports note that the studies produced have had
little effect, however. Of the many recommendations produced (on average about twenty-
two per study), only one, recommending the creation of the Software Engineering Institute,
has had a significant lasting effect. Two others were the creation of the Ada programming
language and the STARS program (Software Technology for Adaptive, Reliable Systems).
Beyond these three, recommendations which generated specific, significant actions are hard
to identify.

We surmise that the lack of response derives, at least in part, from the lack of DoD
organization(s) with a size, mission, competence, and authority to act on software issues.
This lack of action, we believe, is symptomatic of a problem not just with recommendations,
but with software development and production in general.

32

This page intentionally left blank

33

 Our central recommendation:
structural innovation

1. Mobilize in the short term:
Rapid Evolution Software Engineering
Teams (RESET)

2. Transform in the midterm:
A Naval Software System Center

3. Consolidate in the long term:
• Status quo after step two?
• A Naval warfare center?
• A joint warfare center?

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Our central recommendation: structural innovation

In the course of our study, we identified many problems and we suggest
corresponding solutions. Implementing these solutions is unlikely, however, without some
structural innovation because there is no DoN-wide organization with the mission and
authority to evaluate our suggestions and follow through on implementation.

In light of the importance of software to our defense in the 21st century, we believe
that there is a need to create a DoN-wide organization with a software mission and
appropriate authority. In today’s climate, however, the creation of such an organization has
to proceed in steps. Therefore, we have developed a three-step plan.

Our plan is to start small, with approximately 40 people deployed in what we call
RESET (Rapid Evolution of Software Engineering Technology) teams. The idea is to
concentrate forces, augment selected programs with talented people, extend the program
management function, and generally demonstrate that emerging technology, coupled with
intelligent acquisition policy, can accomplish great cost savings and quality improvements.
We are confident that such teams can be staffed and made effective because we have seen
activities in the Army’s Future Combat System (FCS) program and in NAVAIR that have
some elements in common with our RESET team idea.

Once the RESET teams demonstrate success, the next step involves development of a
more ambitious element - the Naval Software Center. The Naval Software Center would
add DoN-wide missions to the program-oriented activities of the RESET teams.

Eventually, we see the Navy Software Center evolving into something with
considerable size and stature. The exact shape is a matter of debate. There is no particular
point in resolving shape at this point, however, without the wisdom to be drawn from

34

experience gathered in steps one and two. No matter what the final shape, steps one and two
seem like logical prerequisites.

35

 Representative Findings

• Inadequate system engineering–particularly, requirements
definition and system requirements flow-down

• Model driven methods (MDD and MDA) valuable when
matched to a task―they are not universal silver bullets

• Few experienced software acquisition professionals
• Programmer productivity varies enormously
• Inadequate application of existing process methodologies
• Inadequate incentives for openness
• Testing, security, and interoperability often too late
• Lack of investment in software engineering research

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Representative Findings

Specific findings in representative areas follow:

Program/Defense Industry Findings

The Defense Department spends approximately 40% of its RDT&T budget on
software, as cited by the Government Accountability Office (GAO) and the DoD Chief
Information Office. In FY 2003, that equated to $21B (GAO report 2003); and in FY 2006,
that amounted to more than $30B (DOD CIO Report 2006). Of those dollars, approximately
40% was attributed to rework efforts. That amounts to $8.4B and $12B respectively. We
felt that with that level of rework, there was significant motivation and opportunity for
improvement through software tools, process and automation.

In terms of software processes, we noted a lack of adequate system engineering from
top to bottom. This included addressing requirements definition, specification flow-down,
compliance, plans for risk management and final test verification. There was a lack of
system engineering processes and use of productivity enhancing tools which would allow for
timely evolutionary acquisition (spiral development).

Programs were often too optimistic about their ability to reuse software from other product
areas. Comments within software code was often lacking, making it difficult to understand
code functions. Original coders were often not available (reassigned or gone), again leading
to problems understanding the code function. Programs also underestimated the
requirements and number of lines of code. A result of such problems is often a re-bse-lined
program, such as Joint Tactical Radio System re-base-lining.

One positive attribute which we found was the driving force within the DoD to
promote Capability Maturity Model Integration (CMMI) certifications in order to develop

36

common software practices. However, the CMMI certifications are not perfect. A facility
developing a DoD program could be certified to a certain CMMI level; but this did not
ensure that the certified processes were appropriate for the system under development, that
the software engineers working on the program were part of the original certification, or that
the certified processes were actually followed.

Claude Bolton, Assistant Secretary of the Army (Acquisition, Logistics and
Technology) told us about the Army's Strategic Software Improvement Program (ASSIP)
Plan. ASSIP addresses the sustained efforts necessary to institutionalize continuous
improvement in acquisition practices for software intensive systems across the system
lifecycle. It also addresses the need to proactively identify, create, and mature the software
and system engineering technologies that will be required in response to the increasing
complexity of software. We found no analogous effort or champion on the part of the Navy
with respect to a similar type of initiative or software focus.

In terms of management, software quality and productivity seem to be heavily
influenced by the competency of the leadership and adequacy of management practices. We
felt that it was not necessarily the specific process that determined quality or effectiveness, as
much as the presence of good leadership and consistent direction. For example, in the Navy’s
Single Integrated Air Picture Program, Capt. Jeff Wilson and, in the Army’s Future Combat
System Program, Lt. Col David Basset give such leadership and direction - thus providing
the perquisite for success. Instituting good leadership and management practices in software
development has a significant potential benefit.

In terms of enabling technology that can supplement good leadership, processes such
as Model Driven Development™ (MDD™) and Model Driven Architecture® (MDA®)
appear to offer potential for structure and oversight in the development cycle. We hheard
from briefers who were strong advocates for processes such as MDD™ (for example: the
SIAP Program- using Kennedy Carter’s iUML tool; Raytheon - using the PathMATE™ tool).
These processes use higher level tools and a language (such as UML) to define software as a
system of systems and thus assist in generating, evaluating, and formalizing requirements.
Higher level tools can also help in testing and validation of system functions and interfaces.

None of these tools is a silver bullet, however. None can be said to be fully
mature. None can be applied without careful attention to the principle that the tool
should be well matched to the problem. There is no seamless requirements-to-models-
to-code-to-test-to-lifecycle solution at all.

Several key authorities noted that people’s capability and skill sets were fundamental
to successful software development. A classic study indicates that top programmers are as
much as 200 times more productive than the poorest performers. The study found that the
top 27% of the staff did 78% of the work, yet the overall salary range was a factor of only
two. So for example, in the most extreme case, if we have a 200 day project, the best of
programmers could do the work in one day, while the weakest of programmers would take
200 days. If we assume that the best programmer is paid twice what the weak programmer
receives, using weak programmers cost 100 times more than using strong programmers.

We found that in the Defense Industry, there was incentive to use lower productivity
programmers. With Cost-Plus-Fixed-Fee contract structures, there exists an incentive to use

37

lower skilled labor. Hence, if the task is not completed within the specified labor-hours,
more hours can be added to complete the work.

Commercial Findings

During fact-finding, we had a two-day meeting in Redmond with the Microsoft
product line development organization and with their advanced research organization. Our
purpose was to gain insight into the strategies, tools and procedures used for software
development in Microsoft's Windows OS product line, as well as for other application
software development. One of our principal findings was that Microsoft did not mandate
particular software specification and development tools to be used by developers. This was
primarily true for the new Windows VISTA OS development for which the size of the total
software system is approximately 50 million lines of code. Their strong belief was that these
types of tools are typically very domain-specific, and therefore they rely on each
development team to select and develop tools that best fit their particular functional
requirement. As an example, in the VISTA Windows OS development, they do not use
model driven architecture or model driven design technologies. However, Microsoft is a
very strong believer in the incorporation of integrated, centralized testing as a part of their
developmental software system build process to be used throughout development. To help
facilitate testing for both errors and functionality validation, Microsoft has developed and
now uses a software annotation language toolset called SAL as part of their developmental
process. In addition, as soon as possible in the development process, they also institute a
regular, time-based software system build process and submit every new build to thorough
testing before committing any software elements to the new system build. New system
builds of the VISTA OS were occurring each day. At the appropriate time in the
development process, it is required that all developers actually use the latest build of the
developmental system as their base for doing further software development. This process has
been thoroughly incorporated into the Microsoft culture for their major software product
lines like Windows VISTA.

Although most of the Windows VISTA OS is written in C++, Microsoft's most recent
experience has been that advances in compilers, context-sensitive garbage collection and
other technologies are now beginning to make "safe" languages such as JAVA and C#
practical for production applications requiring low latency, efficient resource utilization and
predictable performance. There is some evidence that these "safe" languages could become
the future for Commercial Off-the-Shelf (COTS) software. In addition to these
developments, Microsoft Research is also in the process of developing next generation
versions of Window OS, which use layering and internal inter-process access controls to
achieve much higher degrees of security protection than do current systems. These are
probably five or more years away from production. It was also observed at Microsoft, and is
recognized to be true for most other vendors, that commercial industry is very heavily
focused on the implementation of software systems which are compatible with service
oriented architectures (SOA). This is of course completely driven by commercial business'
use of the Internet and Web-enabled services. A large proportion of this technology is
completely transferable to help meet DoN's operational requirements for systems based on
service-oriented-architectures using the GIG and Maritime Framework for the GIG
(ForceNet). Commercial developments in the areas of information discovery and distributed
collaboration toolsets are of particular interest. We also found that distributed software

38

systems based on SOA are becoming capable of supporting low latency, time-critical
applications which often characterize operational requirements of DoN systems such as the
Cooperative Engagement Capability (CEC) system. This is becoming more feasible through
advances in commercial Internet communications technologies. These enable the negotiation
of low latency, variable quality of service protocols with variable levels of security service
functionality.

DoN Findings

The Navy often develops Naval Software in programmatic “boxes” or in
organizational “stovepipes” without proper consideration for interoperability between and
among programs. As a result, opportunities for software commonality and related cost
savings are frequently missed. In addition, currently the DoN has no process to look across
platforms and programs to identify such opportunities for portability and reuse.

Development, and more importantly, implementation of a formal interoperability
process would identify opportunities for commonality and reuse. On those few occasions
when interoperability is considered in the construction of Naval Software, it is most often an
afterthought, rather than being designed into the system architecture – a necessity for the
development of efficient, effective, reusable interoperable code. This same failure applies to
software security. Software is not secure unless the security is architected into the computer
system design at the beginning. Neither interoperability nor security are effective “add-ons.”

The Navy not only misses interoperability opportunities, but also often develops
software on an ad hoc (i.e., “one off”) basis, without the benefit of applying lessons learned
from predecessor programs, and often fails to incorporate commercial best practices. In
short, each time the Navy develops software, they “reinvent the wheel.”

Another deficiency we noted was the lack of DoN investment in software technology
research. The Office of Naval Research does not have a specific focal area for software
research; software development is addressed on a need/specific program basis only. There is
no transcending software research group.

We feel that it is a fatal flaw for the Navy to rely solely on the Defense Acquisition
Workforce Improvement Act (DAWIA) to provide Navy program managers with the
necessary knowledge, skills and abilities. DAWIA requirements for program management
level III certification do not account for or include the specialized knowledge, skills and
experience for the acquisition of software intensive systems (specifically knowledge and
experience in the development and implementation of software) - a particularly high risk
because all warfare systems, regardless of size, have a substantially software content.

The lack of software development experience is found throughout all levels of the
acquisition hierarchy. As a result, legal and quality issues continue to come to the forefront
and Naval contracts lack the incentives for industry to hire quality developers. Naval
contractors are further hampered in recruiting by citizenship and security clearance issues.

Standards and metrics are also lacking in the development and acquisition of systems.
Programmer skill levels, whether in industry or the government, are often inadequate, and
simply relying on CMMI certification does not guarantee that processes will be appropriately
selected and followed or that trained personnel will execute. An additional risk is that CMMI
certification is done only once and never requires an audit.

39

For software management, acquisition and quality control there is no focal point to
ensure consistency, efficiency, and effectiveness. Finally, only scant attention is paid to
requirements management, testing and maintenance costs when contracts are awarded.

40

This page intentionally left blank

41

 Leadership recommendations

• Put somebody in charge:
– Establish acquisition educational standards
– Promote basic process improvements
– Increase awareness of software problems,

technology, and opportunities
• The ASN (RDA) is already engaged

(memo of 15 May 2006)

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Leadership recommendations

We feel that to adequately address the deficiencies cited in the findings and to avoid
the pitfalls of previous DoD software panels, a central focal-point and advocate is required in
the DoN. The ASN is currently acting in this type of role, as demonstrated by her
memorandum of 15 May 2006 (Appendix B), which addresses process improvements for
software development.

42

This page intentionally left blank

43

 Acquisition and practice recommendations

• Create software acquisition specialty within
the Navy

• Develop real incentives to share
specifications, interfaces, models, and
software (eg ARCI program)

• Apply emerging software engineering tools
to appropriate problems

• Deploy system engineering methods that
enable specification, implementation, and
testing to evolve together

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Acquisition and practice recommendations

As previously noted, it is a fatal flaw for the Navy to rely solely on the Defense
Acquisition Workforce Improvement Act to provide Navy program managers with the
necessary knowledge, skills and abilities to manage software programs. A lack of software
development experience is found throughout all levels of the acquisition hierarchy. As a
result, legal and quality issues continue to come to the forefront and Naval contracts lack the
incentives for industry to hire quality developers. Naval contractors are further hampered in
recruiting by citizenship and security clearance issues.

Other recommendations are offered for data rights, human resources, programming
methodologies and security and survivability.

Data Rights

A contentious issue related to software is data rights. In some instances, ownership of
software may be important to the contractor. In almost all cases, however, it is critical to the
government to have open architectures and the ability to integrate new software into legacy
software. These two desires often create conflicts which lead to legal battles. This issue needs
to be addressed appropriately in contract specifications flow (government to contractor and
contractor to contractor). Appropriate contract language combined with appropriate
incentives need to be used to ensure specifications are shared when appropriate, open
architecture is maintained, and opportunities for future government use/modification are
maintained throughout software development. We recognize, however, that data rights policy
flexibility has been shown to be valuable and continues to be needed in connection with
SBIR contracts, because without data rights, small companies would have much less
incentive to innovate.

44

Human Resources

The acquisition and development of software is critically dependent on the people
involved in the processes. Software acquisition is so sufficiently different from hardware
acquisition that a designation of a software acquisition specialist needs to be established. A
person with this designation will have met appropriate training and certification
requirements. The software acquisition specialists will also need well trained in-house
software specialists to provide technical guidance for the acquisition process. These in-house
software specialists must either be acquired or trained. On the contractor side, an issue of
concern is the use of CMMI level business-unit certification. When the certification is
acquired, it relates only to a specific business-unit. There is no guarantee that the certification
level of a business unit actually applies to a team assembled for a specific project. In
addition, it appears that some contracting approaches, such as cost plus fixed fee, might
encourage contractors to use low performing programmers. Because the performance ratio
between high performing programmers and low performing programmers is on the order of
10:1, while the pay difference ratio is closer to 2:1, cost plus fixed fee actually increases the
funding to the contractor when low performing programmers are used. This concern should
be avoided by applying the appropriate contracting language to ensure that high quality
programmers will be used by the contractor. Appropriate auditing should then be applied to
ensure the use of high performing programmers.

Programming Methodologies

Navy Software Intensive Systems are extremely complex, often including many
millions of Source Lines of Code. These systems are deployed over a long time period in an
environment characterized by volatile geo-politics and rapidly changing technology. Navy
Software Intensive Systems must be rapidly adaptable to the changing missions that emerge
from this environment and they must remain safe, reliable and secure as they are changed.
The fact that so much of the functionality is implemented in software is the single most
important factor in enabling these systems to evolve to meet changing needs. The Navy
therefore needs to develop and adopt methodologies that regard evolvability as the most
important characteristic of software systems and that are geared towards supporting a
continuous process of improvement while maintaining performance, safety and security.
Along these lines, we recomend the following:

Recommendation: Use system engineering methodologies that enable specification,
implementation, and testing to evolve together.

The Navy needs to develop an integrated evolutionary Systems Engineering approach
that unites specification, implementation, testing and verification into a single continuous
process in which all components (specification, design, implementation, testing and
verification) evolve together in small steps. This approach grounds the requirements in the
reality of what can be implemented and through early modeling tests the requirements
against what the users actually need. It helps to keep requirements, designs, and
implementations in sync with one another and provides a chain of accountability and
visibility throughout the process.

45

Recommendation: Encourage practice of nightly/weekly end-to-end system build and
test.

Delaying integration and testing until the end of a development process leads to large
costs and delays. We recommend that the Navy adopt a process that is used in commercial
software development (e.g. Microsoft) and that involves building a complete system at very
frequent intervals (daily or weekly). Each build is thoroughly tested using test suites and
verification tools that are co-developed with the software system itself. Systematic check-in
processes guarantee that individual components are submitted to the system build only after
they have undergone component level testing and verification. By doing this process early
and often, defects are detected early and fixed before they have serious consequences.
Because there is always a “current system” that has been tested, it becomes possible to issue
frequent releases that introduce new capabilities in small blocks and to rapidly fix problems
found in the field. Because the testing and verification tools progress with the software, they
provide more substantive support and better testing of what actually does go wrong, not just
what might go wrong.

Recommendation: Learn to match emerging methodologies and tools to the specific
problems at hand.

There are several emerging technologies that will be important to the Navy: Model-
driven approaches (e.g. model-driven architecture, model-driven design, model-integrated
computing), software factories, product-line approaches, use of annotations and static
checking, model-checking, Incremental implementation methodologies using frequent (daily
or weekly) full system builds and tests, use of smaller but much more frequent (e.g.
quarterly) releases to the field, domain-specific languages, safe languages, configuration
management tools, and so on. None of these is a “silver bullet” that fixes all problems;
however, each of them has merit. In most cases, more than one of these methodologies and
tools may be applied synergistically.

We recommend that the Navy begin to evaluate and adopt these emerging tools and
methodologies; however, it is important that the Navy develop sophisticated taste. Some
tools and approaches match certain problems far better than others. The Navy should learn to
match emerging methodologies and tools to their problems, adopt an experimental attitude,
and become willing to try new approaches and tools - adopting them when they fit well and
discarding them when they do not. Time should be budgeted into projects to allow for such
experimentation and there should be a process for sharing lessons learned.

Recommendation: Avoid proprietary development environments that block migration
to competing and future development environments.

While we recommend that the Navy experiment and adopt new tools, we also
recommend that the Navy be wary of “lock-in”, whether intentional or accidental. Many of
the emerging tools have proprietary elements that provide no path for migration to other
tools. It is critical that the Navy avoid such lock-in for several reasons: first, many of the
tools are developed by organizations that might go out of business or abandon the product.
Second, because no single tool covers all of the issues of interest, it is critical to federate the
tools into larger ensembles. Third, newer tools with better capabilities are always emerging.
Therefore, we recommend that the Navy not commit any project to a tool that does not offer
migration paths to other environments.

46

Security and Survivability

Navy Software Intensive Systems will operate as components of an overall Net-
centric military, integrated through ForceNet and the GIG. Traditionally, most of the Navy’s
Software Intensive Systems have been protected by an “air-gap”; but we are rapidly moving
into a world in which all systems will be networked, including those, such as weapon
systems, that traditionally operated stand-alone. With the power of net-centric warfare,
however, also comes the vulnerability to attacks on the information systems that manage
sensors, fire-control, and C2. These attacks may steal or compromise information; they may
disable or degrade entire systems. As we have seen in the commercial sector, vulnerabilities
in networked software systems can be rapidly amplified.

Navy software systems must be designed systematically for security and
survivability. That is to say they must be designed both to resist attacks and to be able to
provide critical services even in the face of successful attacks. These concerns need to be
addressed as a critical element of the overall development process: systematic vulnerability
analyses should be conducted early in the requirements and specification process; security
and survivability approaches need to be included as a key element of the design process; the
design solutions need to be documented, modeled and analyzed; the implementations need to
be systematically checked for compliance with the security design; and the overall system
needs to be tested and validated not just for functionality but also for security and
survivability.

Recommendation: Require security and survivability specifications.

All software intensive systems will operate in a networked environment; information
attacks will be an integral part of the war-fighting environment. Every software intensive
system will have security and survivability requirements, and therefore, every such system
must include specifications that address these requirements. These should be rooted in a
systematic vulnerability analysis that documents the threat environment. Automated
vulnerability analysis tools, where available, should be employed in tandem with more
traditional manual analysis techniques.

Recommendation: Require continuous testing and verification for security and
survivability properties.

As the system design and implementation proceed, it is crucial that security and
survivability specifications are adhered to. Thus, test suites that stress these properties
should be developed early. These should be exercised constantly and used in conjunction
with verification tools to ascertain whether each system build meets the security and
survivability design goals. Independent review team efforts should be conducted periodically
to provide independent certification.

Recommendation: Track and exploit emerging systems definition models to manage
security and survivability.

The commercial sector is developing a set of system definition and modeling
languages that are used to drive the system configuration process. These tools can help
guarantee that each component of an overall distributed system adheres to a set of
configuration constraints that have security implications. These tools are not yet mature, but

47

there are emerging standards and tools. The Navy should track this emerging technology and
require its use when there is a good fit.

Recommendation: Require use of safe languages to remove vulnerabilities.

It is estimated that 80% of the security vulnerabilities in software intensive systems
arise from “buffer overflows” - the failure of a program to check that it does not overrun the
bounds of an array when storing data. Some programming languages automatically perform
bounds checks and other similar checks, and are therefore referred to as safe languages -
these include Java, Lisp, C#, Python and many others. Other languages, such as C and C++,
regard the run-time performance cost of these tests to be too high and would rather leave it to
the programmer to manually insert such checks where they think it is appropriate. In
practice, if these checks are left to the programmer’s discretion, they are omitted, leading to
vulnerabilities.

We have seen convincing evidence that safe languages can perform at the same
performance levels as unsafe languages (and sometimes better) and that they offer much
higher productivity. We therefore believe that there is little justification for the continued
ubiquitous use of unsafe languages in systems programming. We do not believe that it is
useful to mandate a particular safe programming language; different ones have different
strengths. However, we do recommend that the Navy require the use of safe languages in all
new projects.

48

This page intentionally left blank

49

Iterative
Systems

Engineering
Process

User community

Requirements

System
Models

Object
Definitions

Interface
Specifications

(eg UML)

Simulations

Model driven tools can stimulate and enforce
iterative systems engineering

Legacy
Components

Recommendation focus:
the user-requirements loop

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Recommendation focus: the user requirements loop

In an ideal world, the connection of the user community back to itself through
requirements, models, and simulations would be a tightly coupled loop that would ensure that
users expectations are in conformance with reality and that builders produce what users need.
Today, promising new tools are emerging that support parts of the loop, such as widely
advocated object-definition tools, but collectively, the tools lie in disconnected clumps.
Consequently, the output of a requirements system may be ignored by busy downstream
developers who have no mechanism for feeding back practical considerations into the
requirements system. Requirements, models, simulations, and the eventual system fall out of
synchrony ensuring user dissatisfaction and maintenance nightmares.

Thus, there is a conspicuous need for software-supporeted mechanisms that ensure
that users and key stakeholders can effectively communicate with systems engineers during
the development and technical validation of system requirements and continuously
throughout the evolution of the program.

We are encouraged by the development of higher order language-based system
modeling tools for characterizing and then simulating performance of complex software
systems; they offer a significant potential for helping users to become players along with
software systems engineers in the iterative process of developing requirements for complex
software systems and then validating those requirements through high level system
operational simulations. But the new tools, by themselves, do not close the loop and cannot
ensure that unrealistic or unachievable system requirements can be exposed and reviewed
early in the program development process. Similarly, assumptions about interoperation of
new software subsystems with existing legacy software systems cannot be tested at a high
level before large software developments are undertaken. Also, the validity of assumptions

50

about the reuse and integration of previously developed software subsystem modules cannot
be validated before non-recoverable costs are expended.

Overall, there is a great need for system level tools that could help well-intentioned
people to do a good job of understanding and iterating requirements with users as necessary
to facilitate tradeoffs for developing solid system specifications. To emphasize this point, we
found that significant amounts of the software rework problems now being experienced on
many Navy development programs actually have roots in requirements/specifications
shortfalls occurring early in the program. In particular, as one example, we found several
cases where overly optimistic expectations for the reuse of previously developed software for
meeting new program requirements were made without adequate means for validating these
expectations. Unfortunately, today many of these types of problems are really not visible
until late in the program when higher level software system integration and testing finally
occurs. Of course, at these later stages in the program development, any corrections can
become very extensive with impacts on many other functions thereby resulting in significant
cost and delay.

51

 Naval S&T program recommendations

• Start focused effort
• Leverage existing software engineering research

and practice
• Develop, for example:

– Software tools for evolutionary systems engineering
– Practices for automated daily build, test, and evaluation
– Domain-specific model languages
– Technology for dealing with legacy systems
– Means to exploit lessons-learned and best-practices

knowledge bases (such as those of NASA, DOE, FAA,
and ONR activity at University of Maryland)

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Naval S&T program recommendations

We believe the Government is not investing adequately in Software Engineering
R&D. The only major investment is at the Software Engineering Institute (SEI). DARPA
and ONR no longer play a significant role. Neither DARPA nor ONR have a single program
whose principal topic is software engineering; what little investment exists occurs as an
ancillary activity within programs with other purposes. Even making extremely liberal
assumptions, it appears that the total DoD investment in Software Engineering R&D
accounts for less than 1% of the DARPA budget. The commercial sector provides only
minor relief: only a few large companies are making substantial R&D investments in
software technology - notable among these is Microsoft’s recent interest in software quality.
However, there is an overall significant shortfall in software research.

Our most important recommendation in this area is that the Navy have an R&D
program in software engineering technology. We identified several research foci of interest,
but feel the specific focus is less important than first establishing a concentrated software
research effort. The Navy program would complement the ongoing industrial research. The
following are some of the areas we identified as worthy of investment.

Focus: Evolutionary Systems Engineering

Today’s approach to software development divorces requirements definition, system
analysis, design, implementation, testing and continuing engineering and maintenance into a
pipeline of separate activities with no feedback between them. This leads to requirements
creep, unrealistic designs, buggy implementations, cost overruns, schedule slips and inflated
life-cycle costs.

Instead, we recommend a new approach that we call evolutionary systems
engineering. This approach should integrate the full spectrum of software engineering tasks

52

into a single, rapid-response process in which each part of the process proceeds in small
incremental steps that provide information to both downstream and upstream activities. For
example, early modeling and coding efforts might provide information about the true cost of
a requirement, while early testing and simulation efforts can catch bugs before they
propagate. Another important aspect of this approach is to automatically capture design
rationale, analysis, simulation and test results so that we know how the requirements are
being met and so that we can examine the impact of an incremental change in any component
of engineering chain.

Evolutionary systems engineering will require tools that allow daily/weekly build
practices adapted to military systems. These build practices would support incremental
testing of all artifacts: specifications, models, and codel helping to find and correct problems
earlier and lead to more realistic estimates of progress towards goals. These tools should
support frequent, incremental releases that rapidly address problems found in the field and
that deliver frequent upgrades in capabilities. This rapid cycling of releases will bring
experience into the process of prioritizing continuing engineering efforts, with those issues of
most importance to the warfighters being addressed first. Also, such eolutionary systems
engineering tools will also provide higher confidence in the quality of the delivered products.

Focus: Model Driven Approach – Domain-Specific Modeling and Implementation

Unlike industry software, Navy software must meet safety, security and real-time
requirements. Navy software also deals with a broader and different range of subject matter
(e.g. radar, sonar, fire-control, avionics, etc.) than does most commercial software. We
therefore recommend that part of the task of the R&D program will be to develop tools
complementary to those used in industry that can deal with these additional concerns and
domains. We recommend that one focus be on the construction of domain-specific modeling
frameworks and domain-specific programming languages that facilitate independent
expression and analysis of multiple aspects (e.g. security, real-time requirements) of the
problem. But it is also imperative that we provide tools for integrating these independent
viewpoints and domains into a common framework that supports global analysis of the entire
system.

Focus: Improved Safe Languages

Safe languages such as LISP, Java, and C # show great promise for improving the
quality, safety and security of software intensive systems; they also promise significant
improvements in programmer productivity. In many cases, the abstraction level achievable
in such languages is equal to that of the “action semantics” language of model based systems.
We recommend that new effort be put into investigating and developing new safe language
technology with particular emphasis on meeting the Navy’s needs for real-time, embedded
computing, for aspect-oriented decomposition, and for embedding of domain-specific
languages.

53

Focus: Capturing Commonality Across Projects

The Navy builds many systems. Although each of these serves a unique purpose and
embeds a unique set of design decisions, there is still enormous commonality among these
systems when viewed from an adequate level of abstraction. Ideally, these systems should
be built from a common core that is tailored to each specific system by a relatively minor
layer of platform-specific software. This idea is referred to as the product line approach. We
recommend that the S&T program investigate new tools and techniques that can support the
product line approach. In particular, tools that can help track design choices and the reasons
for making them will help to separate out product specific aspects of a system from aspects
that are of general purpose across the domain.

Focus: Capturing Lessons Learned and Best Practices

The Navy develops a large number of software systems and many of these systems
remain in the field for decades undergoing constant evolution and upgrade. These efforts
constitute a huge experience base and one that is uniquely tailored to providing information
about future large-scale Navy projects. We suggest that another research focus might be on
tools that help organizations learn from best practices as well as from mistakes. We
recommend that the research address tools which help organizations capture lessons-learned
and best-practices and help to efficiently provide this information to those affected when they
can best benefit from it.

54

This page intentionally left blank

55

 Assessment

• Information dominance central to defense,
but at risk

• Lots of opportunity, but little decisive
action to date, for lack of structure

• Visionary action and structural innovation
needed

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Assessment

There is no doubt that information dominance will be core to future defense efforts,
especially for the long war on terrorism. This leads us to serious concerns because we
believe that the way the DoD specifies, contracts for, tests, validates,and maintains software
is deeply flawed. Furthermore, with budgets escalating from current war efforts, the DoD
and DoN can no longer afford to pay the mounting rework costs associated with development
programs. In order to address these concerns, we feel that visionary action and structural
innovation are needed to ensure immediate and long term results.

56

This page intentionally left blank

57

 Step one: Rapid Evolution
Software Engineering Teams

• Staff each with 10-20 full time equivalents
• Complete user-requirements loop
• Promote use of system engineering tools, policies,

and practices
• Champion best-practice software methodology

emphasizing commonality, evolution, adaptation,
reuse, reliability, interoperability, security and
rapid response to changing defense needs

• Identify open systems needs and ensure
compliance

• Recommend contract incentives
• Monitor progress and sustain support

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Step one: Rapid Evolution Software Engineering Teams

The structural change proposed in the study is a three-step process that starts with the
creation of a special kind of project management and ends in the establishment of an
organization aimed at ensuring excellence in software. We envision that the size and
significance of the final organization will be comparable with a warfighting center.

The initial step establishes and uses RESET (Rapid Evolution of Software
Engineering Technology) teams to interact with contractor software development teams. The
RESET teams, consisting of 10-15 software experts, will be collocated with the contractor
software development team and will interact with them on a continuing basis throughout the
contract. They will be responsible for working with both the contractor and the user
community to ensure that contractor requirements remain consistent with user needs. They
will promote the use of system engineering tools, policies, and practices. They will
encourage the use of software methodologies which emphasize commonality, evolution,
adaptation, security, and rapid response. They will recommend best practices such as regular
code builds and tests throughout the development process. As Naval systems move toward
ForceNet and the GIG, the RESET team will understand requirements associated with both
and ensure that the software development is compliant with them. To encourage contractors
to adopt the recommendations of the RESET team, changes in the contract language may be
needed. The RESET team will be in position to observe contractor behavior and help
recommend an incentive structure that ensures the desired results. Finally, the RESET team
will monitor progress, document best practices and lessons learned, and become the
knowledge base for software development processes for the government.

58

This page intentionally left blank

59

 Step one: Implementation

• Embed on contractor site in two or more
representative programs (to promote
commonality), such as CG(X), BAMS, Aegis
upgrade, LCS

• ASN RDA provides seed money to selected PEO
to initiate activity

• Staff with expert personnel from ONR, NRL,
UARC, FFRDC (such as SEI), Warfare Centers,
National Laboratories, government agencies,
academia, and noncompeting contractors

• Report to ASN through PEO

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Step one: Implementation

To best assess the effectiveness of RESET teams, they should initially be embedded
in at least two or more representative programs. The programs chosen should be software
intensive and the team should be introduced into the program at a point where contracting
language can clearly identify the team and its activities. This will avoid any issues associated
with non-contracted activities or suggestions from the RESET team. The Navy should
consider candidate programs such as CG(X), BAMS, Aegis upgrade and LCS.

The ASN (RDA) will be responsible for providing the funding to establish the team
and conduct its activities. The individuals comprising the team should be software experts
and should come from agencies such as ONR, NRL, University Affiliated Research Centers
(UARC), FFRDCs (such as SEI, IDA, Aerospace, and MITRE), Warfare Centers, National
Laboratories, other government agencies, academia, and noncompeting contractors. The
teams will report to the ASN through the PEO. This will provide the type of visibility the
team will need to influence the program.

60

This page intentionally left blank

61

 Step two: Naval Software System Center

• Staff with ~50 full time equivalents
• Institutionalize and staff RESET teams
• Build models and assist in building models

– Complete requirements---users loop
– Complete model---VV&A loop
– Solve ownership problem
– Ensure compliance with lessons learned

• Maximize Naval commonality
• Manage and staff independent expert reviews
• Recommend incentives and acquisition policy
• Manage innovation through programs, such as

SBIRs, ATDs/JCTDs, …

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Step two: Naval Software System Center

Following the formation and successful operation of two or three RESET teams, the
next step is to institutionalize RESET teams and expand the responsibility and benefit of
getting the highest quality software system support to the program managers and PEOs. A
new structure was envisioned which could provide an enterprise-wide capability in software
system development, management support, and lifecycle support. We named this the “Naval
Software System Center” (NSSC). This concept has many of the good attributes and
functions of the NAVAIR System Software Support Center and the Army Future Combat
System Software Product management team. The NSSC has a mission to support and staff
the RESET teams; build models and assist in helping elements of the Naval Enterprise in
building models; manage innovation; ensure openness and commonality (where it is best
suited for interoperability and business case benefits): recommend acquisition policy; ensure
users are involved with the software developers defining requirements and manage/staff
independent expert reviews.

Comparison of known entities doing similar type of work suggests a staff of
approximately 50 full-time equivalents composed of Naval software and system experts,
IPAs from FFRDCs, other government agencies, SEI and academia as required.

62

This page intentionally left blank

63

 Step two: Implementation

• Embed in SYSCOM, NRL, or existing
warfare center

• ASN RDA funds for FY08 via redirection,
then for FY09 as line item

• Report to a PEO, DASN to ASN, and
OPNAV

• Enterprise coordination

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Step two: Implementation

The NSSC could be embedded in an existing Systems Command, the Naval Research
Laboratory (viz. the Artificial Intelligence Center), or an existing Warfare Center.

We envision that funding to stand up and support the NSSC would be required in FY
2000. A budget line item wedge for FY 2009 can be developed over the next year within the
normal cycle of budget, build and review process. Funds to support the facility and people
are legitimate category 6.5 funds.

The management and reporting line for the NSSC is proposed to be from the PEO
(We suggest PEO (IWS) which is cross cutting across all warfare areas) to the ASN (RDA)
through a DASN (C4I or IWS) or the CHENG.

This lean organization must be designed to be an enterprise-wide service entity
without platform or mission lines and totally open to funding and implementation of the very
best, efficient, and secure software technology and practices from all services - inside and
outside of the DoD - to include leveraging commercial, other government agencies (e.g.,
DoE, NASA) and academia best practices.

64

This page intentionally left blank

65

 Step three: Consolidation

• A cross-cutting, horizontally integrated,
possibly joint activity that ensures
information dominance

• Size and structure to be evolved from
experience with steps one and two

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Step three: Consolidation

Once the RESET teams and the Naval Software Center have achieved a set of
validated processes and structure, the third step would be to establish a permanent,
enterprise-wide asset that consolidates practices into naval operations. The objective of this
entity would be to continually address acquisition, development, and sustainment of software
intensive systems. Moreover, the final vision would be to have this entity perform the cross-
cutting, horizontally integrated naval activity that ensures information dominance.

The final consolidated structure should be in equivalent size and significance to a
Warfare Center and should report directly to the key naval leadership position such as a PEO.
The specific size and structure of the Warfare Center will be determined from the experience
and knowledge gained in steps 1 and 2.

66

This page intentionally left blank

67

 Risks and challenges: steps one–three

• Human resources difficult to obtain
• Cultural resistance
• Budget priorities
• Industry pushback
• Contracting difficulties
• Multiyear sustenance

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Risks and challenges: steps one - three

There are, of course, numerous risks and challenges associated with successfully
implementing the three-step process. There were five areas that wel specifically highlight as
potential obstacles.

Human resources - The RESET teams, Software Systems Center and final Software
Warfare Center will require individuals with a diverse set of skills. The ideal candidates
should have a computer science education as well as program acquisition knowledge. These
individuals will need to have hands-on code generation experience as well as first-hand
software program and procurement management experience. Finding of the right leaders will
be a challenge, but we note that officers trained at the Naval Postgraduate School constitute a
great pool of candidates. Others could be brought in from institutions outside of the Naval
enterprise such as FFRDCs, UARCs, national labs, non-competing contractors, etc.

Cultural resistance - The RESET teams, Naval Software Systems Center, and
Software Warfare Center will develop a set of cross-cutting common methodologies, best
practices, and standards. There will be different views on preferred approaches among
programs and organizations. There may be strong resistance by these groups to changing
practices and adapting standard methods. Furthermore, there may be resistance on the part of
programs to inserting outside knowledge experts into current operations. (Personalities on
the RESET teams could play a crucial role in determining acceptance and success.) The three
step process and early successes would help begin to address cultural resistances.

Budget priorities - Initially, funding for the RESET teams and the Software Systems
Center will require redirection of budgets and decisions on priorities. Without a strong
champion(s) for funding support, the team and center concept cannot be validated. The long-
term vision is to sustain the Software Warfare Center through a budget line-item.

68

Industry pushback - The RESET teams need to work cooperatively with industry and
offer guidance, support, information, and validation of user requirements. The structure and
approach taken by the RESET teams would help determine their acceptance by industry.
Industry would accept these teams if they were viewed as vehicles to help ensure success as
opposed to a "tax" to the system.

Contracting difficulties - Special provisions may need to be made to contracts to
provide for RESET team interface as well as for implementation of RESET team and
Software System Center recommendations.

69

 Summary

• Assessed situation and articulated concerns
• Listed findings and recommendations
• Established need for innovative structure
• Identified risks and challenges
• Proposed three-step plan for ASN RDA

action

To maintain information dominance,
inaction is not an option

Background

Context

Structure

Findings

Rcmds

Three steps

Summary

Summary

70

This page intentionally left blank

A-1

Appendix A
Terms of Reference

Objective
This study will examine how systems engineering, model driven architecture, and modular
software specification and implementation methods can be applied in a realistic manner to
specifying, bidding, and engineering of software-intensive systems, across multiple
organizations. Beyond technical considerations, this study will investigate challenges with
using and fielding computer-based acquisition tools in the context of existing Navy
organizational structures, policies, and the overall workflow associated with the acquisition
of new systems.

Background
There is a great opportunity to introduce efficiencies, transparencies, and tracking into the
overall workflow involved in acquiring new systems and platforms by applying information
technology and constructs from information technology in a beginning to end manner. Key
S&T is required for understanding how to insert modeling, simulation, and computer-based
representations into the design, construction, testing, and maintenance of software-intensive
systems. Particular opportunities include the application of ideas developed in industry for
the decomposition of software systems into interacting modules with clearly defined
interfaces in a comprehensive manner, touching multiple points in the acquisition process.

The study will require the participation of experts with a detailed understanding of the
Navy’s software systems acquisition process as well as experts on systems engineering,
modeling and simulation, and on principles of modular design. The study would build on the
prior NRAC study on system modularity, but would direct a focus of attention on the
technical and organizational challenges of acquisition.

Specific Taskings
• Review current relevant DoD programs (e.g. Navy Open Architecture, Single

Integrated Air Picture, etc.).

• Review and assess current industry tools, practices and standards for developing
complex system architectures (e.g. Modular Open Systems Architecture, Model
Driven Architecture, etc.).

• Identify potential benefits to the Navy of shifting to evolving industry best practices.

• Recommend changes in Navy acquisition management, systems engineering, training,
education, and business practices.

• Identify S&T investment paths.

• As appropriate, evaluate emerging tools for specifying, bidding, and engineering
software-intensive systems and suggested strategies for use across multiple
organizations.

Study Sponsor: Mr. Carl Siel, RDA (CHENG) and RDML Michael S. Frick, USN, PEO-
IWS are co-sponsors for this study.

A-2

This page intentionally left blank

B-1

Appendix B

B-2

B-3

B-4

C-1

Appendix C
Acronym List

Acronym Definition
ABM/GIFC Advanced Battle Manager/Global Integrated Fire Control

Ada The name of the DOD programming language mandated
 in the 1980s. Not an acronym, the language was named
 after August Ada, Countess of Lovelace, purported to be
 the first programmer.

ARCI/APB Acoustic Rapid COTS Insertion/Advanced Processor Build

ASSIP Army’s Strategic Software Improvement Program

BAMS Broad Area Maritime Surveillance

 CEC Cooperative Engagement Capability

 CG(x) A new Cruiser class

 CHENG Chief Engineer

CJCS Chairman of the Joint Chiefs of Staff

CMMI Capability Maturity Model Integration

COTS Commercial Off-the-Shelf

DAWIA Defense Acquisition Workforce Improvement Act

DSB Defense Science Board

DSL Domain Specific Language

FCS (Army) Future Combat System

FFRDC Federally Funded Research and Development Center

FORCEnet "Maritime Framework for the GIG"

GAO Government Accountability Office

GIG Global Information Grid

GSA General Services Administration

IPAs Intergovernmental Personnel Act

JSF Joint Strike Fighter (F-35)

JSSEO Joint SIAP System Engineering Organization

JTRS Joint Tactical Radio System

LCS Littoral Combat Ship

LMRS (Navy) Long-term Mine Reconnaissance System (replaced
NMRS)

C-2

MDA ® Model Driven Architecture ®

MDD™ Model Driven Development™

MSLOC Million Single Lines of Code

NSA National Security Agency

NSS National Security System

QDR Quadrennial Defense Review

 RESET Rapid Evolution Software Engineering Teams

SBIR Small Business Innovative Research

SEI Software Engineering Institute

SIAP Single Integrated Air Picture

SLOC Single Lines of Code

SOA Service Oriented Architecture

STARS Software Technology for Adaptive Reliable Systems

UARC University Affiliated Research Center

ULS Ultra Large Systems

UML Unified Modeling Language

