

Future Naval Use of COTS Networking Infrastructure

Briefing to

Mr. Sean J. Stackley
Assitant Secretary of the Navy, RD&A

VADM Harry B. Harris, Jr.

Deputy Chief of Naval Operations for

Communication Networks (OPNAV N6)

Study Sponsor

RADM Nevin P. Carr, Jr. Chief of Naval Research

July 7, 2009

UNCLASSIFIED – Draft – Not for Release

Panel Membership

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

RADM John T. Tozzi, USCG (Ret.) (Chair)

L-3 Communications

Dr. James Bellingham (Co-Chair)

Monterey Bay Aquarium Research Institute

Dr. Amy E. Alving

Science Applications International Corporation

VADM Bill Bowes, USN (Ret)

Consultant

RADM Daniel R. Bowler, USN (Ret.)

Lockheed Martin Corporation

RADM Erroll Brown, USCG (Ret.)

International Business Machines Corporation

Dr. Mark G. Mykityshyn

White Oak Group

Dr. John C. Sommerer

Johns Hopkins Applied Physics Laboratory

Professor Patrick H. Winston

Massachusetts Institute of Technology, CSAIL

Dr. David A. Whelan

The Boeing Company

Mr. James L. Wolbarsht

DEFCON®, Inc.

Mr. Ryan Gunst

ONR Science Advisor to N6 (Chief of Panel Executive Secretariat)

LT Josh O'Sullivan, USN

Executive Secretary

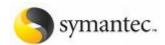
Terms of Reference

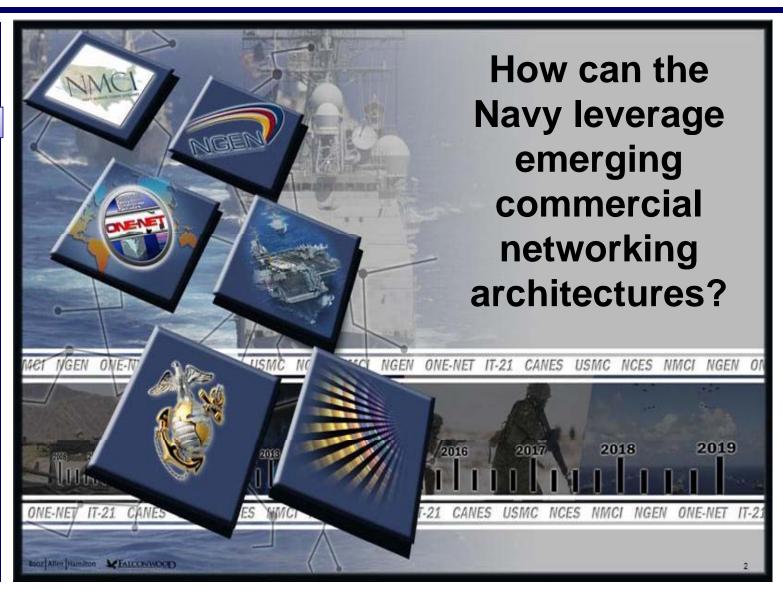
- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

- Study the Navy's use of commercial architectures, software, and hardware.
- Examine the related emerging networking approaches under development in the commercial world.
- Examine the development and operational practices associated with the emerging approaches.
- Suggest strategies for leveraging ongoing COTS investment in future Naval networks:
 - In light of dramatically changing Naval bandwidth availability, uncertain connectivity, and large latencies
 - Within a global supply chain
- Recommend S&T investments to adapt the emerging networking approaches to Naval requirements.

Fact Finding

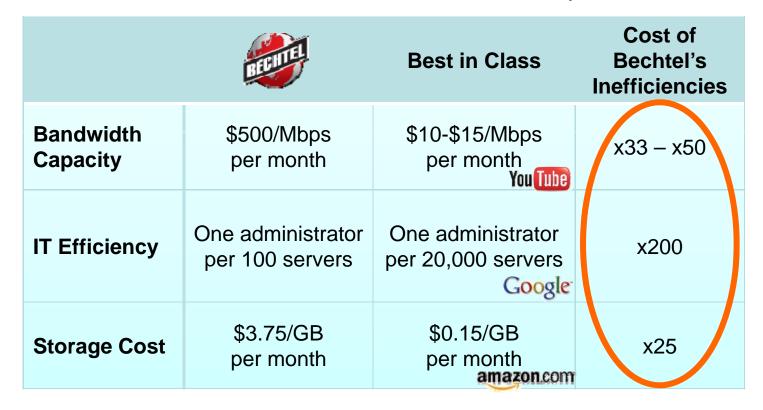
- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways





Current Naval IT Programs

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways



W7/7/C Why This Briefing Matters to the Navy

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

Bechtel CTO Geir Ramleth compared his internal network costs to the costs of best-in-class providers

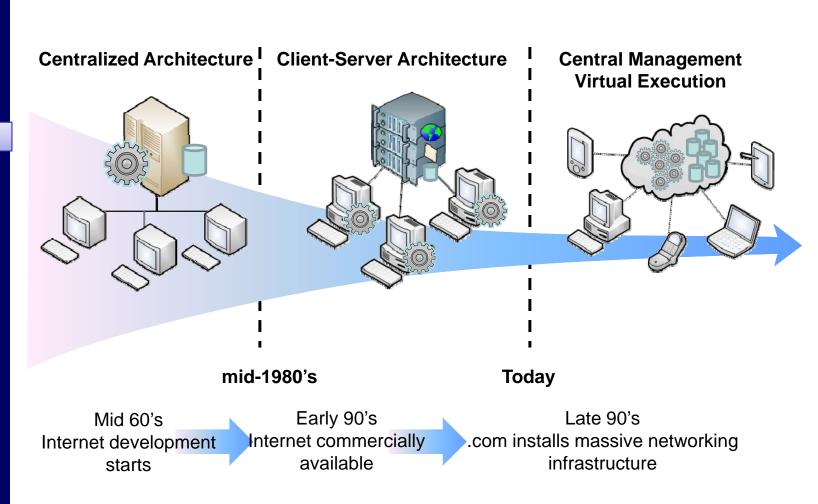
Potential Savings are Compelling

MATE Why This Briefing Matters to the Navy

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

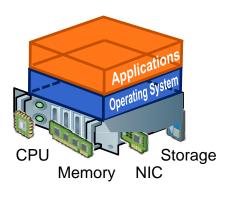
"Our S&T investments must address Warfighting gaps and improve our effectiveness and efficiency."

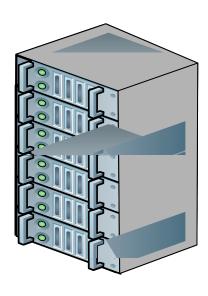
2009 CNO's Guidance


- Information dominance is central to **National Military Strategy**
- Information dominance **requires** being near the leading edge of technology
- Being **near the leading edge** today can increase network efficiency 10s to 100s of times
- Societal transformations are being driven by advances in Information Technology (e.g. social networking is changing how people interact with people)
- The **new networking architectures** enable the NNE objectives as well as operational commander priorities well beyond what the current architecture can provide

Translates to greater effect at lower cost

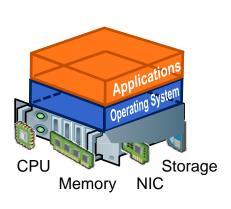
NATE Evolution of Networking Architectures

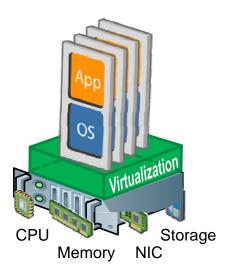

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways



Evolution of Resource Sharing

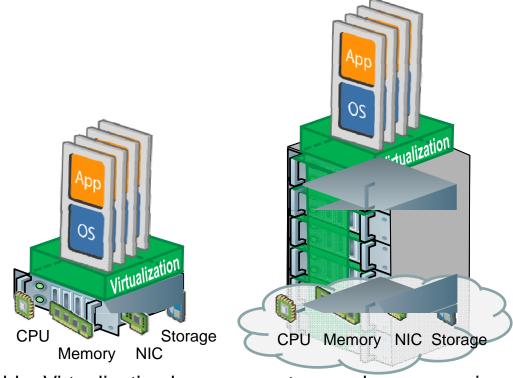
- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways




- <u>1-to-1 Server/OS Ratio</u>: Operating system and applications installed on each machine.
- <u>Configuration Management</u>: OS and applications updated periodically, creating diversity of versions across the network.
- <u>Security Patches</u>: IT must support ALL of the versions!

Evolution of Resource Sharing

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways



- Flexibility: Virtualization layer allows multiple OS on an individual server.
- <u>Standardized Configuration</u>: Provides a uniform server environment easier for IT to support!
- <u>Efficiency</u>: Allows each server to be used more efficiently, and therefore, requires fewer physical servers.

Evolution of Resource Sharing

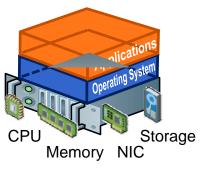
- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

- <u>Scalable:</u> Virtualization layer supports seamless expansion of computing and storage capacity on demand.
- <u>Pools Resources</u>: Permits creation of large, shared server and storage capacity serving large and diverse user community.
- <u>Availability</u>: Load leveling virtual machines across servers provides instant recovery from failure of physical servers.

What is Cloud Computing?

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

Cloud computing is a style of computing that enables


- available, convenient, on-demand network access to
- a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, services) that can be
- rapidly provisioned and released with
- minimal management effort or service provider interaction.

Adapted from the NIST Working Definition

Cloud Impact

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

Before:

- 7 data centers and 35,000 sq ft of datacenter capacity across a distributed footprint.
- 5 versions each of 230 applications.
 Upgrades and training were constant.
- No version management.

After:

- 3 data centers with less than 1,000 sq ft of datacenter space.
- 1 version of each of the 50 most heavily used applications converted to run from a Google-like portal.
- Centralized version management.

Cloud Revolution = Think Scalable

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- · Why This Matters
- Network Evolution
- · Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- · Action Items
- Take-Aways

Cloud Revolution = Think Innovation

MAJJ Technical Issues for Naval Implementation

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

Security in the Cloud

 Uniform, efficient enforcement of security standards

but

- It opens up some new and different security concerns
 - In the Virtualization Layer
 - In Software
 - In data at rest

Bandwidth & Connectivity to the Cloud

 .com implementations assume ubiquitous, high-bandwidth, continuous connectivity

but

 The Navy must deal with limited bandwidth and intermittent connectivity

Finding I: Transformational

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

Finding:

1. Cloud computing technology has the potential for transformational benefits to Naval networks (not a fad).

Recommendations:

- 1-A. <u>Acquisitions</u>: Ensure future DoN acquisitions consider and, as appropriate, leverage the benefits of cloud computing.
- 1-B. <u>Pay-as-you-go</u>: Develop long-term procurement strategies for purchasing on demand computing capacity.
- 1-C. <u>Metrics</u>: Standard cloud computing models and performance metrics should be developed to assist in the design, monitoring and contracting of systems.
- 1-D. <u>Pilot</u>: Establish cloud computing pilot program(s) to explore the key metrics, benefits and issues.
- 1-E. <u>Standards</u>: Must enter the standards conversation with the commercial community to represent unique Naval needs.

Finding II: Security

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

Finding:

2. Trust in the security of cloud technologies; i.e., confidentiality and integrity, is the greatest challenge to cloud utilization.

Recommendations:

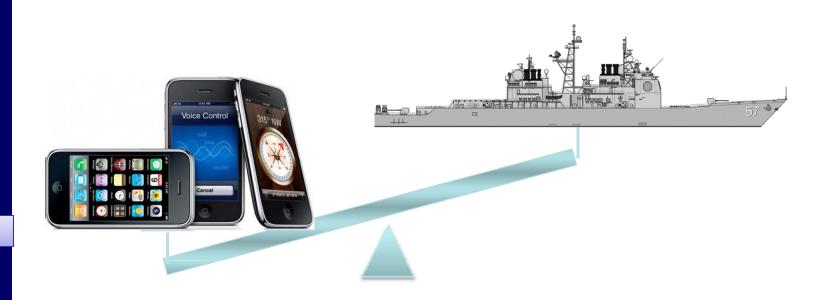
- 2-A. Research Areas: Track research and fund activities to fill Navy specific gaps:
 - Trusted (formally verified) virtualization layer
 - Data-at-Rest in the cloud
 - Secure cloud applications
- 2-B. Confidentiality/Integrity: Develop strategies, technologies, and protocols to enable Naval forces to fight through loss-of-trust events and to rapidly restore trust and integrity of cloud operation. Future Naval war games should test these strategies, technologies, and protocols.

Finding III: Intermittent Operations

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

Finding:

3. Naval forces afloat will remain disadvantaged by intermittent links with large latency and marginal bandwidth. This may affect the capabilities of cloud computing-based systems that depend upon more reliable links.


Recommendations:

- 3-A. <u>Continuity</u>: Develop technologies to ensure continuity of cloud operations in the face of failed communication links (e.g. between shore and afloat components).
- 3-B. <u>Synchronization</u>: Research ways for cloud synchronization over intermittent/low-bandwidth/mobile channels
- 3-C. Redundancy: Research and develop high bandwidth and multiple redundancy links (e.g., the DARPA ORCA program).

Bandwidth Challenge to DoN Use of Cloud Architecture

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

Connectivity pervasive for .com applications
Achieving this for disadvantaged user nontrivial

Actions

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

ASN RDA

1-A. <u>Acquisitions:</u> Ensure future DoN acquisitions consider and, as appropriate, leverage the benefits of cloud computing.

DON CIO

1-E. <u>Standards</u>: Must enter the standards conversation with the commercial community to represent unique Naval needs.

• <u>N6</u>

1-D. <u>Pilot</u>: Establish cloud computing pilot program(s) to explore the key metrics, benefits and issues.

NNWC

- 1-C. <u>Metrics</u>: Standard cloud computing models and performance metrics should be developed to assist in the design, monitoring and contracting of systems.
- 2-B. <u>Strategy</u>: Develop strategies to enable Naval forces to fight through loss-of-trust events and to rapidly restore trust and integrity of cloud operation. Future Naval war games should test these strategies.

PEO EIS

1-B. <u>Pay-as-you-go</u>: Develop long-term procurement strategies for purchasing on-demand computing capacity.

Actions

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

PEO C4I

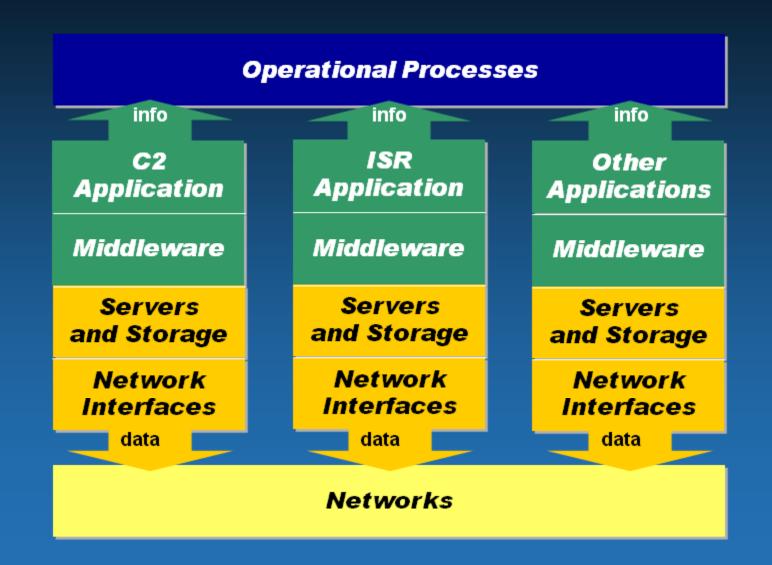
- 2-B. <u>Technologies & Protocols</u>: Develop technologies and protocols to enable Naval forces to fight through loss-of-trust events and to rapidly restore trust and integrity of cloud operation.
- 3-A. <u>Continuity</u>: Develop technologies to ensure continuity of cloud operations in the face of failed communication links (e.g., between shore and afloat components).

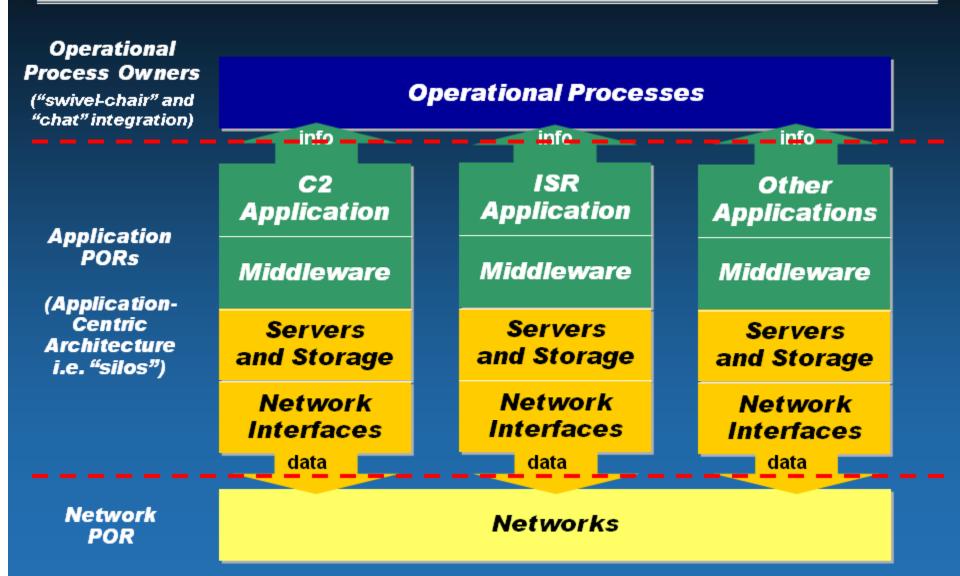
• <u>CNR</u>

- 2-A. Research areas: Track research and fund activities to fill Navy specific gaps:
 - Trust (formally verified) virtualization layer
 - Data-at-rest in the cloud
 - Secure cloud applications
- 3-B. <u>Synchronization</u>: Research ways for cloud synchronization over intermittent/low-bandwidth/mobile channels.
- 3-C. Redundancy: Research and develop high bandwidth and multiple redundancy links (e.g. the DARPA ORCA program).

Take-Aways

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways


- Cloud Computing: the next big step in networking architecture
- Engage the cloud community to ensure Navy needs are incorporated into evolving standards.
- Establish cloud pilot project(s) for non-combat services.
- Focus research and development efforts on:
 - Securing the virtualization layer
 - Develop data links that enable cloud architectures
 - Cloud performance models to analyze network performance in various conditions


- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

Backup

Current Afloat Architecture

Current Afloat Architecture

Future Service-Oriented Afloat Architecture

Operational Process Owners

> Platform Integration PORs

Application PORs

Operational Processes

Services-Based Applications

C2 Services-Based
Applications

ISR Services-Based
Applications

Other Svcs-Based Applications

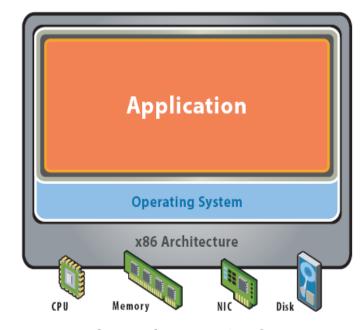
Common Application Services (e.g. CNDE)

Services Infrastructure

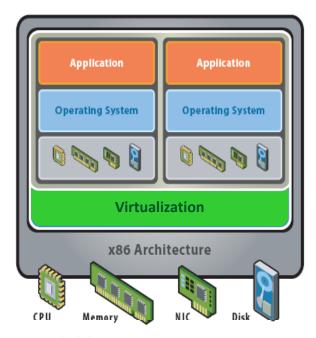
Software Components

Infrastructure POR Resource Virtualization

Servers and Storage


Network Interfaces

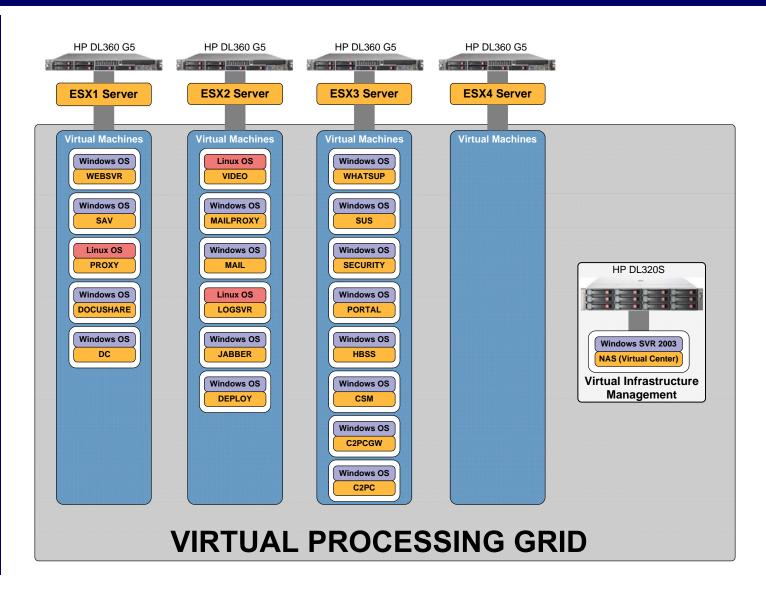
Networks


What is Virtualization

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

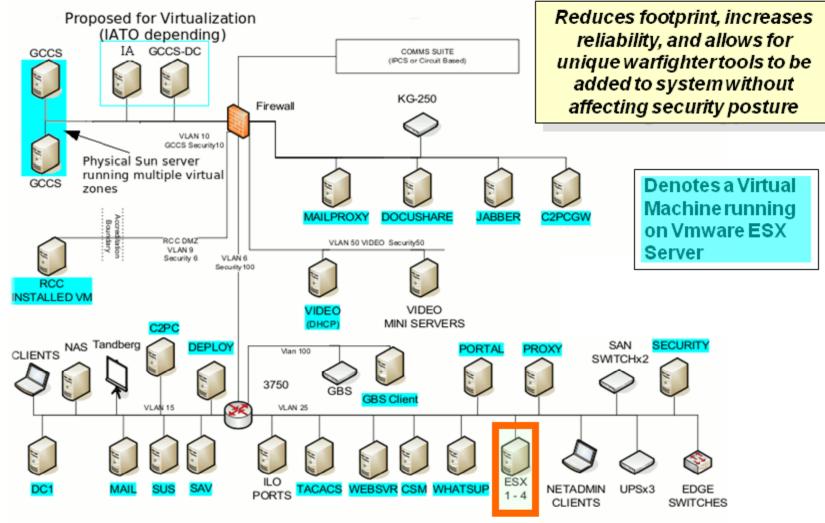
- 1-to-1 Server/App Ratio: Operating system and applications installed on each machine.
- Large Configuration Management:

 1-to1 OS and applications updated periodically, creating diversity of versions across the network.
- <u>Security Patches</u>: IT must physically support ALL of the versions!



- <u>Flexibility</u>: Virtualization layer allows multiple OS on an individual server.
- <u>Standardize Configuration</u>: Provides a uniform server environment – easier for IT to support!
- <u>Efficiency</u>: Allows each server to be used more efficiently, and therefore, requires fewer physical servers.

DJC2 Data Center


- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

DJC2 Spiral 1.2 Virtual Environment

Comparing Clouds and SOA

Cloud Computing

- Software As a Service (SAAS)
- Utility computing
- · Terabytes on demand
- · Data distributed in a cloud
- Platform as a service
- Standards evolving for different layers of the stack

Overlap

- Application layer components / services
- Network dependence
- Cloud / IP Wide area
 network (WAN)-supported
 service invocations
- Leveraging distributed software assets
- Producer/consumer model

SOA via Web Services

- Systems of systems integration focus
- Driving consistency of integration
- Enterprise application integration (EAI)
- Reasonably mature implementing standards (REST, SOAP, WSDL, UDDI etc.)
- SOA and cloud computing concepts are complementary important overlap occurs near the top of the cloud computing stack, in the area of *Cloud Services*
- Both cloud computing and SOA share concepts of service orientation
- Cloud computing focuses on turning aspects of the IT computing stack into commodities that can be purchased incrementally from the cloud-based providers
- Both are forms of outsourcing, sharing network dependence

Special Thanks To:

- Panel
- TOR
- Fact Finding
- Naval IT Programs
- Why This Matters
- Network Evolution
- Resource Sharing
- Cloud Computing
- Impact
- Technical Issues
- Findings
- Action Items
- Take-Aways

- Mr. Jefferey Barr, Amazon Web Services Evangelist, Amazon
- Mr. Justin Burks, Amazon Web Services Alliance Manager, Amazon
- Mr. Mike Culver, Web Services Evangelist, Amazon
- Mr. Paul Horvath, Solutions Architect, Amazon
- Mr. Stephen Schmidt, General Manager, Enterprise & Federal AWS, Amazon
- Mr. Matt Tavis, Solutions Architect, Amazon
- Mr. Tim Dowd. CISCO
- Mr. Stephen Orr, CISCO
- Mr. Bruce McConnell, Group Chair, Cybersecurity for the 44th Presidency, CSIS Dr. Bobby Junker, Head, C4ISR, ONR
- Mr. Eric Gundersen, President, Development Seed
- Mr. Richard Hale, Chief, Information Assurance Executive, DISA
- Mr. Dave Mihelcic, CTO, DISA
- Mr. Dave Baciocco, CTO, Ericsson
- Mr. Kevin LaMontagne, Gartner
- Mr. Robert Mason, Gartner
- Mr. Jason Cain, Google Earth Enterprise Sales Engineer, Google
- Mr. Dylan Lorimer, Strategic Partner Mgr Geo Content Partnerships, Google
- Mr. Rajen Sheth, Senior Product Manager- Google Apps, Google
- Mr. Graham Spencer, App Engine, Google
- Mr. Mark Wheeler, Google Earth/Maps Enterprise, Google
- Mr. Jim Young, DoD Sales Manager, Google
- Ms. Casey Coleman, CIO, GSA
- Mr. Lawrence Hale, CTO & PM IT Infrastructure Line of Business, GSA
- Dr. Christopher Codella, Asoc. Director of Technical Strategy, IBM
- Mr. Jay Magnino, Client Manager Navy, IBM
- Mr. Alex Morrow, IBM Fellow, IBM
- Mr. Herb Kelsey, Deputy CTO Cyber Security, IBM Federal
- Mr. Jeff Havens, Architect, Windows Azure Enterprise Strategy, Microsoft
- Mr. Brian LaMacchia, Software Architect, Microsoft
- Mr. Jeff Mendenhall, Dir Business Development-Data Center Futures, Microsoft Mr. Robert Grossman, Founder and Managing Partner, Open Data Group
- Mr. Dan Reed, Managing Director, Scalable and Multicore Systems, Microsoft
- Mr. Dan Fay, Dir External Research for Earth, Energy, & Environment, Microsoft
- Dr. Dennis Gannon, Dir, Applications for Cloud Computing Futures, Microsoft

- Dr. Eric Horvitz, Principal Researcher and Research Area Manager, Microsoft
- Ms. Kristin Lauter, Principal Rsrchr, Cryptography Research Group, Microsoft
- Mr. Brad Mercer, Chief Architect Naval C4I Systems, MITRE
- Mr. Geoff Raines, Principal Software Systems Engineer, MITRE
- Dr. John Gauss, NGEN SPO
- Mr. Timothy Grance, Program Mgr Cyber & Network Security Program, NIST
- Dr. Bruce Wald, Former Director, Space and Communications, NRL
- Mr. Ryan Gunst, Science Advisor, ONPAV N6
- Dr. Das Santu, Program Officer, Communications and Networking, ONR
- RDML David Simpson, OPNAV N6N
- Mr. John McDonnell, Asst. PEO -Science & Technology, PEO C41
- Mr. Charlie Suggs, Technical Director, PEO C4I
- Mr. Gary Shaffer, Deputy Technical Director/Chief Engineer for SOA, PMW 160
- Mr. Allen Armstrong, APM, PMW-140/DJC2 JPO
- Dr. Anupam N. Shah, Chief Scientist/Engr, Enterprise & Mission Solutions, SAIC
- Dr. Frank Perry, CTO, Defense Solutions Group, SAIC
- Mr. Bill Vass, President and COO, Sun Microsystems Federal
- Mr. Mark Bregman, CTO, Symantec
- Mr. Joe Pasqua, VP Research Symantec Research Labs, Symantec
- Dr. Zulfikar Ramzan, Tech Director, Security Tech and Response, Symantec
- Mr. Al Kohnle, USFFC MOC Project Team
- CAPT Mark Lane, USFFC MOC Project Team
- Mr. Steve Ebbets, USN/USMC/DoD Senior Systems Engineer, VMware
- Ms. Melissa Palmer, Strategic Account Mgr USN/USMC, VMware
- Dr. Mary Langston, Former DoN CIO
- Mr. Bryan Atwood, Product Manager, Google Earth Enterprise
- Mr. David Aucsmith, Sr. Director, Inst. for Adv. Technology in Gov, Microsoft
- Mr. Yousef Khalidi, Distinguished Engr, Cloud Infrastructure Services, Microsoft Mr. Richard Mathews, Director, Information Assurance Research Laboratory,
 - NSA and others at National Computer Security Center & IA Research Lab

 - Mr. Rob Wolborksy, Program Manager PMW-160