Exploitation of Thermal Signals in Tidal Flat Environments

Jim Thomson
Applied Physics Lab, University of Washington
1013 NE 40th St, Seattle, WA 98105
Phone: (206) 616-0858 Fax: (206) 543-6785 Email: jthomson@apl.washington.edu

Chris Chickadel
Applied Physics Lab, University of Washington
1013 NE 40th St, Seattle, WA 98105
Phone: (206) 221-7673 Fax: (206) 543-6785 Email: chickadel@apl.washington.edu

Award Numbers: N000140710768, N000140810809

LONG-TERM GOALS

The overall goal is to identify and understand the physical processes that shape and change coastal environments. Emphasis is on the application of remotely sensed infrared signals that can be compared with in situ observations and assimilated within predictive models. In tidal flat environments, major goals are detection of: geotechnical properties (e.g., sediment strength), morphologic features (e.g., channels), related hydrodynamic events (e.g., plumes), and buried objects.

OBJECTIVES

The primary objective of these joint efforts is to develop thermal methods for improved monitoring and prediction of tidal flat environments. Specific objectives are to:

- Test and apply the Lovell [1985] hypothesis for the porosity of sediment as a function of thermal conductivity,
- Refine methods to estimate inter-tidal bathymetry using sequential waterline detection,
- Quantify the importance of channel networks.

APPROACH

The technical approach is to conduct field experiments using simultaneous remote and in situ observations of thermal signals in tidal flat environments (Figure 1). Infrared images collected from airborne and fixed platforms are being used to study surface temperatures, which are then related to an array of interior (sediment and water) temperature measurements. The experiments are designed to study geotechnical, hydrodynamic, and morphologic aspects of tidal flats.
Figure 1. Schematic diagram showing infrared and in situ measurements of thermal signals in a tidal flat environment. The infrared measurements of surface temperature are made from a tower, aircraft, or helikite, and the in situ measurements of interior (both water and sediment) temperature are made from anchored platforms.

The sediment temperature data is analyzed using Lovell’s [1985] empirical formula for the fractional porosity \(n \) (i.e., the water content) of saturated sediments as a function of thermal conductivity \(k \), where

\[
k = k_s^{(1-n)} + k_f^{(n)},
\]

and \(k_s \), \(k_f \) refer to the thermal conductivities of the solid and fluid, respectively.

Assuming a 1D heat balance, the temperature \(T \) at the surface of the sediment (measured using infrared imagery, see Figure 1) diffuses downward in a vertical \(z \) profile (measured using buried loggers) at a time \(t \) rate governed by

\[
d^2T/dz^2 = (c\rho/k) dT/dt,
\]

where \(k \) is the thermal conductivity of interest, \(c \) is the specific heat, and \(\rho \) is the density [Subramaniam and Frisk, 1992; Jackson and Richardson, 2002]. Sediment porosity \(n \) is estimated by finding the best-fit \(k \) at each location in the imagery and then is compared with sediment samples.
Differential sediment and water surface temperatures are used to detect waterlines and thereby estimate bathymetry. Waterlines extracted within plan-view infrared images at incremental tide stages will be interpolated to a Digital Elevation Model (DEM), similar to work with optical imagery in the nearshore [Plant and Holman, 1997] and infrared satellite imagery [Ryu et al., 2002]. Infrared imagery is well suited to shoreline identification due to the differential heating rate of sediment (fast) versus water (slow). We have increased the likelihood for quality data return and the general image resolution over satellite imagery by developing and deploying a small aircraft based thermal imaging system. Flying over the flats in a “lawn-mowing” fashion, we later georectify and mosaic the collected imagery for quantitative analysis. Bathymetry estimates will be compared against ground surveys collected during the pilot experiment.

The field data also will be used to quantify surface fluid velocities (e.g. using imagery [Holland et al., 2001]) and estimate volume transport (using in situ data [Wunch, 1996]). These hydrodynamic quantities will be used to evaluate correlations with bathymetric features, such as channels, and will be compared with in situ velocity measurements, including those made by S. Elgar & B. Raubenheimer (Woods Hole Oceanographic Institution) and S. Henderson (Washington State University).

WORK COMPLETED

During the first part of FY10, we processed data from the summer 2009 field experiments, and then presented our results at a Tidal Flats DRI meeting in October 2010, the Coastal and Estuarine Research Foundation meeting in November 2009, and the Ocean Sciences meeting in February 2010. During the second part of FY10, we successfully completed additional field experiments on the Willapa Flats of Washington State, as shown in Figure 2. Infrared and LIDAR measurements were made from a tower at the “D” channel of Willapa Bay. The in situ measurements included arrays of temperature and pressure, as well as a meteorological station and two acoustic Doppler current profilers. The LIDAR was provided by Elgar & Raubenheimer (WHOI). Figure 2 shows the tower and the boat used for data collection during a one-week focus study in March 2010. In addition, longer term time-lapse images were collected from December 2009 to March 2010 and meteorological measurements continued until September 2010.
RESULTS

Results to date confirm that thermal signals can be used to remotely classify sediments and detect bathymetric features. In particular, the heat flux of exposed sediments is related to the composition and porosity of sediments (Thomson, 2010), consistent with an empirical model for thermal diffusivity as a function of porosity (Lovell, 1985). Sediments absorb heat during periods of strong solar radiation consistent with a 1D diffusion equation (Kim et al., 2007). The sandy sediments have a much stronger response to heating, because the water content and porosity is lower, compared with the muddy sediments. Figure 3 shows a preliminary application to airborne infrared sensing in Willapa Bay.

Figure 3. Aerial infrared map (left) and inferred porosity of exposed sediments (right) from Willapa Bay.
Thermal images collected from overflights showed substantial gradients, which can be exploited to measure large-scale bathymetry and circulation. A first-time bathymetry map was calculated from a composite set of airborne thermal imagery between April and July in 2009. A maximum-gradient and threshold based method was devised to detect sharp transitions between temperature regions with accompanied significant temperature change (Figure 4, left). Thus, the method is skilled in selecting the distinct temperature difference between heated exposed sediments and cooler surface water (as is typical in the summer) as opposed to the less defined mixing region of warm and cool surface waters that can be present on the flooding tide (which would have been erroneously detected by a simple threshold method alone). A bathymetric map of the intertidal region is calculated from a set of shorelines at different tidal water levels made over successive flights (Figure 4, right). The appearance of the resulting map is encouraging, though the full map is noisy due to interpolation and smoothing of small-scale channel morphology.

Figure 4. Aerial infrared map (left) from Skagit bay with an automatically identified waterline (red). A composite map interpolated from successive shorelines is shown on the right. Black dots indicate locations of identified shorelines and highlight channel locations.

Waterlines bounding tidal flat channels were also examined for morphological change. Figure 5 shows a single year cycle of waterlines in geo-referenced infrared images on the upper Skagit flats near Craft Island detected from the automated routine. The automatically identified distributary channels appear to show dramatic change over the year, yet are also spatially confined. Increased river flow during storm and melt water run-off (April-June) appears to be accommodated by channel development to the east of the main north-south aligned channels. River water then reoccupies the main channels during low flow in summer and early fall flow periods. The main low flow channels have surprising little change in channel patterns and location from fall 2008 and summer 2009. This could be due to a variety of conditions including larger-scale bathymetry, partitioning of flow through the vegetated marsh, and sediment composition and strength among others.
Figure 5. Waterlines detected in an annual sequential of airborne infrared images of the distributary channels on the Skagit flats near Craft Island.

IMPACT/APPLICATIONS

Improving techniques to remotely quantify tidal flat properties will allow for real time monitoring and safe operation in these environments. In particular, remote porosity estimation and channel detection will improve navigation for amphibious landings.

RELATED PROJECTS

A new “helikite” imaging platform, developed under a DURIP (PI: Andrew Jessup), has dramatically improved spatial coverage of our infrared sensing by providing additional elevation and dwell time.

An ongoing MURI (Coherent Structures in Rivers and Estuaries Experiment, PI: Andrew Jessup) has provided infrared image data for proof of concept applications in the remote sensing of tidal flats (www.cohstrex.apl.washington.edu). Equipment and resources are shared with this project.

A new DoD MURI (Data Assimilative Modeling and Remote Sensing for Littoral Application, PI: Andrew Jessup) will benefit from experience gained here and use many of the techniques and equipment tested in these sets of experiments.
This effort is a contribution to the Tidal Flats DRI (www.tidalflats.org).

REFERENCES

PUBLICATIONS

HONORS/AWARDS/PRIZES

ONR Young Investigator Program (N000140710768): Jim Thomson, Applied Physics Lab, University of Washington.