
1 
 

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 
 
 

Quantitative Estimation of Variability in the  
Underwater Radiance Distribution (RADCAM) 

 
Marlon R. Lewis and Ronnie Van Dommelen 

Satlantic, Inc. 
Richmond Terminal, Pier 9 
3481 North Marginal Road 

Halifax, Nova Scotia, Canada B3K 5X8 
phone: (902) 492-4780     fax: (902) 492-4781     email: marlon@satlantic.com  

 
Contract Number: N0001409C0084 

http://www.satlantic.com  
 

 
LONG-TERM GOALS  
 
A significant source of uncertainty in the prediction of the apparent optical properties of the ocean is 
the geometrical distribution of the radiance field and its variation with respect to time and space; this 
uncertainty directly affects attempts to use measurements of reflectance and attenuation for the 
diagnosis of ocean constituents.  Uncertainties in the time and depth dependent variations in the 
radiance distribution, and their sources of variation, propagate as well to the prediction of the 
performance of new imaging systems such as the “virtual periscope”.   The problem starts at the sea 
surface, where the generally unknown sky radiance distribution, coupled with a roughened air-sea 
interface, plays a major role in the transmission of sun and sky radiance to below the surface.   In the 
ocean interior, the volume scattering function, and the absorption coefficient alter the radiance 
distribution in both the forward and backward direction; in the perhaps usual situation of multiple 
scattering, the uncertainty in the radiance distribution becomes large.   In optically shallow areas, non-
Lambertian bottom reflectances add to the uncertainty.   
 
Our long-term goal is to develop and deploy a relatively simple means for the measurement of the full 
radiance distribution, which could be routinely deployed by the optical oceanographic community.   A 
further side benefit would be that many of the measurements currently made, such as planar and scalar 
irradiance, angle-dependent Q factor etc., could be made by various integration operations on the 
measured radiance field rather than with mechanical diffusers.   The potential interferences of various 
deployment platforms (e.g. shading, reflectances by ships, buoys and towers) could be measured 
directly rather than inferred based on inaccurate assumptions about the underwater radiance 
distribution.  A direct confirmation of the asymptotic radiance distribution can be made.  Finally, high 
quality quantitative (and radiometrically calibrated) measurements of the radiance distribution, and 
their time and depth derivatives, can in principle (but not yet in practice) be used to estimate all the 
inherent optical properties (both absorption and volume scattering coefficient) and as well the nature of 
the air-sea interface.    
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OBJECTIVES  
 
The Radiance Camera or RadCam project is part of the Radiance in a Dynamic Ocean (RaDyO) 
program.  The primary objective is to create a camera that can record the spatial radiance distribution 
at the ocean surface and at depth.  The proposed instrument will be uniquely capable of resolving both 
the downwelling and upwelling radiance distribution and its variation with depth, time and wavelength 
( ( )λφθ ,,,, tzL );  from these measurements, the apparent optical properties ED, EU, Eo, Eou and Eod are 
computed by integration.   The distribution functions (e.g. the average cosines) are computed directly, 
as are the various diffuse attenuation coefficients and reflectances.    The fully-specified radiance field 
therefore provides all the pertinent information to derive not only the apparent optical properties, but 
the inherent optical properties:  the absorption coefficient and, in principle by inversion, the volume 
scattering function.    An instrument capable of this measurement to the necessary accuracy, resolution, 
and noise characteristics could, again in principle, replace all or most of the optical instruments 
currently deployed today. 
 
APPROACH  
 
While radiance cameras have been built before, they have not been able to image the sun at the surface 
due to the very high scene dynamic range.  RadCam takes advantage of recent developments in high-
dynamic range (HDR) CMOS imaging arrays.  These arrays were developed for science, surveillance, 
and automotive applications.  Traditional CCD arrays are linear, limiting the dynamic range that can be 
achieved.  These HDR CMOS arrays use a number of different methods to produce a nonlinear 
response function, giving scene dynamic ranges of up to 120 dB or 6 decades. 
 
WORK COMPLETED  
 
In the first year of this project we considered several possible cameras and imaging arrays.  We tested 
two candidate cameras/arrays and selected one for RadCam.  Measurements showed operate with a 
scene dynamic range of 6 decades and an impressive system dynamic range of nearly 10 decades. 
 
Three instruments have now been designed and successfully deployed as part of this project.  The first 
is a reference camera mounted on deck.  The second is a logging-type instrument that has been 
mounted on a Bluefin AUV, on an ROV or as an independent tethered underwater unit.  The third is a 
profiler that sends data to the surface for real-time processing.  The first two cameras are upward 
looking only (i.e. they record downwelling radiance) while the profiler has both an upwelling and 
downwelling camera.  This allows it to measure radiance over the entire sphere around the instrument. 
 
During the second project year the first two cameras were assembled.  They were then tested at a 
RaDyO field experiment at Scripps Pier in January 2008.  Following that, the profiling camera system 
was designed and built.  All three cameras were then tested at a second RaDyO field experiment in 
Santa Barbara Channel in September, 2008.    
 
A full field effort was completed in August-September, 2009, in the blue-water region south of Hawaii 
in the vicinity of 18° 00’N, 155° 30’W. Operations were carried out on the R/V Kilo Mauna (Lewis, 
Chief Scientist) where the surface reference and profiler was deployed, and the R/V FLIP where the 
independent RADCAM was deployed by the University of Miami team.   
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Work since the last deployment has involved detailed instrument characterization and calibration, and 
data analysis and interpretation.   Particular efforts were expended to evaluate pixel-to-pixel 
radiometric calibration, and evaluation/correction for point spread function.  The latter involved co-
deployments of RADCAM with the CIMEL sky radiance distribution system. 
 
RESULTS  
 
Hardware 
Each of the cameras include a bandpass filter centered at 555 nm with a 20 nm bandwidth.  The 
imaging chip is a very high dynamic range CMOS array.  The scene dynamic range is 106 and the 
system dynamic range is nearly 1010.  The high scene dynamic range allows the sky and near surface 
radiance fields to be measured without needing to block the sun; the sun does not saturate the array or 
cause blooming.  The field of view of each camera is 180 degrees.  The resolution is 0.5 degrees on 
axis and drops to about 1 degree at large field angles. The frame rate is better than 7.5 fps, limited by 
the deck computer and software that records the video. 
 
Three RadCam instruments are now in operation, as shown in Figure 1.  All instruments contain the 
same high-dynamic range camera, but the reference camera is without a glass dome to reduce glare.  It 
is designed to be mounted in a tripod or attached to a vertical pole.  It transmits live video via a fiber 
optic cable.  Like the other cameras it includes a tilt sensor and compass to orient the images to a fixed 
coordinate system.  The second camera is designed to fit in a Bluefin AUV, but has also been mounted 
in its own cage and lowered from a winch.  It logs all data internally but can be cabled with a low-
speed Ethernet connection to provide a subsample of the video in near-real time over a virtual network 
connection. 
 
The profiling system consists of both a downwelling and an upwelling camera, and ancillary sensors 
including a Falmouth Scientific CTD, multispectral radiance-irradiance head from Satlantic, and a 
Wetlabs transmissometer.  It uses a fiber optic cable to transmit real-time video to the surface.  It is 
designed to freefall through the water column.  Tilts are generally less than 3 degrees and fall rates can 
be controlled from 0.3 to 1.0 m/s.  We have also performed some fixed depth measurements with the 
profiler using a tethered float. 
 
Initial Data 
An example of the vertical variation of the underwater light field from the Hawaii experiment is shown 
in Figure 2.  The images nicely show the Snell cone within the overall 180 degree field looking up, the 
reduction of the Sun’s intensity, and the general increase in the diffuseness of the underwater radiance 
field. 
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a)     b) c)  
 

d)  
 
 

Figure 1:Photographs of three RadCam instruments are a) the in-air reference camera  
b) the logging camera mounted on a cage and being lowered into the water  

c) the logging camera mounted on an AUV (center of Bluefin) and  
d) the profiler camera system  aft deck of the Kilo Moana prior to deployment. 
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Figure 2: Vertical variation in the downwelling and upwelling radiance distribution  

in Hawaiian waters.   The panel on the left shows the downwelling radiances  
approximately every 10 meters from the surface to 50 meters.  The Sun is clearly evident,  
as is the Snell cone;  the radiance field becomes more diffuse with depth.  The panel on  

the right shows the same, except for the upwelling radiances. 
 
For most of the cruise, sky radiance was collected at 30 s intervals throughout the day and will be 
available as both a qualitative and quantitative measure of the sky conditions during the cruise. This 
will be useful, as conditions tended to change rapidly (see Figure 3.) 
 

 

Figure 3: Downwelling sky radiance distribution during the Hawaii experiment.  Note patchy cloud 
distribution and resulting complex radiance field. 
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Calibration 
Calibration of the cameras consists of measuring the response function of the array to incident light 
and then calibrating the whole optical system to a known radiance.  The response function is 
challenging due to both the high dynamic range and the high radiances involved.  The response 
functions are highly nonlinear and vary from pixel to pixel, so every calibration data must be obtained 
for each pixel.  Calibration data has been collected for all of the cameras has now been incorporated 
into the processing scheme.. 
 
Scattering in the optical system must also be characterized by measuring the point spread function 
(PSF).  These exacting measurements were taken in the laboratory for a wide range of angles for each 
of the cameras, and then validated by cross comparison with the CIMEL sky radiance camera.  The 
entire image processing procedure will then be to apply calibration, deconvolve the images using the 
PSF, and finally correcting for tilt and heading changes. 
 
Other results  
Advances were made with respect to the application of precision radiometry in the upper ocean for 
derivation of satellite calibration and validation data sets (Voss et al., 2010), for the derivation of IOP’s 
with a remarkable accuracy (Gordon et al. 2009), for elucidation of the influence of islands on upper 
ocean optics (Hasegawa et al. 2009) and for more general oceanographic applications (Lee et al. 2010).   
Analysis of historical data on ocean transparency and ocean color – much of which was archived by 
ONR – revealed a general loss of chlorophyll and an increase in transparency over the last century 
(Boyce et al. 2010) 
 
IMPACT/APPLICATIONS 
 
The camera may have applications for various sorts of surveillance.  Radiometrically calibrated 
measurements of the in-air and in-water radiance distribution can be made.  The derivation of optical 
properties from these measurements may have practical applications, as commonly made (but never 
tested or evaluated) assumptions can be directly assessed.   It may be possible to derive all IOP 
measurements from the full radiance distribution and its vertical derivative.  The shading effect of 
deployment platforms can be studied directly. 
 
TRANSITIONS    
 
A sky radiance distribution camera of the same design elaborated under this contract has been 
purchased by the Canadian forces (Defense Research Development Canada) for installation in aircraft.   
 
RELATED PROJECTS  
 
This project is embedded within the Radiance in a Dynamic Ocean (RaDyO) program, and hence is 
related to all projects contained therein.  It is also related to the research programs of Dr. John Cullen, 
some of which are sponsored by ONR.   Lewis has related projects funded through Dalhousie, and 
Lewis has related NASA-funded efforts through WetSat Inc. 
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