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LONG-TERM GOALS 
 
The goals of this project are to increase our understanding of weather predictability and its advantages 
and limitations, and to develop methods to provide more accurate forecasts and nowcasts in complex 
terrain using multi-model ensemble modeling techniques and special observations including remotely 
sensed data. 
 
OBJECTIVES 
 
The main objectives of the study are: 1) to further develop, test, and continue twice daily operational 
forecasts using both the real time Weather and Research Forecasting (WRF Version 3.2) model 
(Skamarock et al. 2008) and Mesoscale Model 5 (MM5 Version 3.7.2) (Grell et al. 1994) with sub-
kilometer horizontal resolution to support the NOWCAST system at the Fallon Naval Air Station 
(NAS); 2) To extend the real time forecasting system with a continuous 15-day forecast using WRF as 
a testbed; 3) To analyze multi-model ensemble forecasting capabilities and to provide basis for a real 
time multi-model ensembles using WRF, MM5, and the  Coastal Oceanic and Atmospheric Modeling 
Prediction System (COAMPSTM, Version 3.1.1) (Hodur 1997); 4) To develop a framework that 
complements the ensemble forecasting to better understand the sources of error and uncertainty in 
dynamical forecasts relevant to nowcasting key parameters such as wind speed, cloud fields, and 
visibility over the Fallon NAS area; and 5) To test the forecasting methodology for critical conditions 
of a dust storm affecting the southwest U.S. including the Fallon area. 
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APPROACH 
 
The major components of the project were: (1) maintenance and data collection, quality control, and 
analysis of data from four special weather stations in the Fallon Naval Air Station area; (2) A case 
study of the dust storm in the southwestern U.S., completed using observations and modeling; and (3) 
use of categorical verification to evaluate the regional/mesoscale multi-model (COAMPSTM, WRF, 
and MM5) ensemble forecasting system. The ensemble members for MM5 and WRF are generated by 
selecting different choices of physical parameterizations (planetary boundary layer (PBL) schemes, 
cumulus convection schemes, explicit cloud microphysical schemes, and radiation schemes) of each 
model, and perturbations of initial and boundary conditions (IC/BCs). Ensemble experiments were 
conducted on a 36 km grid (Fig. 1) nested into a 108 km grid that covers the entire North American 
continent and adjoining Pacific Ocean. The main objective is to obtain meaningful probability density 
functions (pdfs) for medium-to-long-range forecasting (from a week to 2 weeks) of the forecast 
variables; that is, to create and analyze pdfs for variables from each model and then combine the 
models (a three-model ensemble) with a total of 150 ensemble members generated from altering the 
physics options.  An additional ensemble set of 100 WRF members was generated through 
perturbations of initial/lateral boundary conditions. The categorical verification measures employed in 
this study follow a contingency table of dichotomous events (Wilks 2006).  In order to map continuous 
forecast outcomes (e.g., temperature) into a dichotomous event, we propose the following 
transformation.  The events are considered using the statistical means (μ) and standard deviations (σ) 
of observed quantities for the entire simulation period at each of the radiosonde sites. The individual 
elements of the contingency table represent a number of events or occurrences for which the predicted 
variables viz., air temperature, geopotential height, and winds, fall within or outside of an interval 
defined by observed means and standard deviations of observed quantities. This is illustrated in  
Figure 1.  
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Figure 1. Schematic for categorical verification showing transformation of continuous forecast 
outcomes into dichotomous events. 

The number of hits A defines the correct forecasts, and the correct negatives (D) provide the definition 
where neither the model predicted the event nor was the event observed. The elements B and C of the 
contingency table define the false alarms in the modeled events and the observed events missed in the 
model predictions, respectively. Both non-probabilistic and probabilistic verification scores are 
evaluated using the elements of the contingency table and forecast probabilities. Two scores that were 
calculated from the contingency tables and discussed here are the Bias (BIAS) and the Threat Score 
(TS). They are defined as follows: 
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where n is the total: 
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BIAS is a ratio of the frequency of predicted to observed events. A BIAS score of smaller (greater) 
than unity indicates that the events were under-estimated (over-estimated).  A perfect forecast yields 
BIAS and TS scores to unity. The Brier score (BS) is a probabilistic verification metric based on 
forecast probabilities of dichotomous (binary) events. This gives the measure of the average square 
error of a probability forecast. This is analogous to the mean square error of a deterministic forecast, 
but the forecasts are given in probabilities. The Brier score (BS) is given as follows: 

( )2

1

1 n

k k
k

BS F O
n =

= −∑  

where n is the number of points in the spatio-temporal domain. kF  is the probability of successful 
forecast occurrence from all the members of the ensemble at each station. In this study n = 23 (the total 
number of radiosonde locations used in the analysis). The probability of detection [ ( )POD A A C= + ] 
at each station is used for forecast probabilities. POD describes the likelihood of an event having been 
forecasted given that it has occurred. The binary event Ok is described as follows: 

1, event occurs
0, event does not occurkO 

= 


 

The definition of the event is the same as used in non-probabilistic verification. The range of BS varies 
from 0 to 1, and a perfect forecast yields a score of zero; and 

(4) A new method has been developed to produce perturbations of boundary conditions. The method 
applies an error growth ratio into the perturbation of boundary conditions, so that the perturbation is 
changing with time. 
 
If there is a small error in the initial conditions, the error gets greater as the forecast range gets longer 
and then reaches the saturated value (Lorenz 1982). A random perturbation (RP) is taken as the 
assumed initial error, and the perturbation for the later times increases in the ratio (Jiang et al. 2010) 
 

         (3) 
 
Based on the random perturbation, the perturbation is transformed to model space via the control 
variable transform (Barker et al 2003, 2004): 
 

      (4) 
 
The expansion U=Up Uv Uh represents the various stages of covariance modeling: horizontal 
correlations Uh, vertical covariances Uv, and multivariate covariances Up.  The perturbation for LBCs 
is varying with time with perturbation of temperature, U, V, and pressure, without perturbation of 
water vapor.  
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WORK COMPLETED 
 
The skill of the multi-model ensemble forecast products was analyzed based on: (a) statistical 
verification to estimate the skill scores; (b) pdf diagnosis, statistics, and evolution; (c) rank histograms 
(Talagrand diagrams); and (d) evolution and spread of parameter trajectories (“spaghetti plots”: 
Superposition of forecast isolines for the ensemble members). 
 
 

 

 
Figure 2.  The WRF, MM5, and COAMPS model domains for the ensemble runs with 108  

and 36 km on the coarse and nested grids, respectively. 
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The main ensemble technique was developed and updated for MM5, WRF, and COAMPS using a 
sufficient set of physics parameterization options that are available for a period of 15 days (12-27 
December 2008). The physics options consisted of a variety of PBL schemes, single and double-
moment cloud microphysics, simple to complex radiation, and cumulus parameterization schemes.  
The simulated case period was chosen because of the two intense frontal passages that occurred over 
NW Nevada.  The initial and boundary conditions for MM5 and WRF were retrieved from the NCEP’s 
Global Forecast System (GFS; http://www.emc.ncep.noaa.gov/).  The Navy Operational Global 
Atmospheric Prediction System NOGAPS 4.0 (archived on 54 km grid; Bayler and Lewit 1992) 
forecast products were used as the initial analysis fields for COAMPSTM .  

 
The source of numerical model uncertainty could be model physics, initial condition, and or lateral 
boundary conditions (Stensrud et al. 2000, Stensrud 2001, Stensrud et al. 2002, Baumhefner 1982). 
Meanwhile ensemble size is another factor for how much uncertainty could be expressed by an 
numerical model ensemble (Houtekamer et al. 1999). According to Baumhefner and Perkey 1982, 
errors in the data specified at the lateral boundary can propagate inward. A new experiment using 
perturbations of the lateral boundary conditions was completed with 50 ensemble members. The 
perturbed lateral boundary conditions were updated every 12 hours. 
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Table 1.  Ensemble set of physical parameterizations and setup parameters for COAMPS. 
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RESULTS 
 
The results from the categorical verification using the Bias, Threat Score, and Brier Score for the 
temperature, geopotential height, and horizontal winds are shown in Figure 3. 

 

 

 

Figure 3. Categorial verification scores of Bias (top row), Threat Score (middle row), and Brier 
Score (bottom row) for COAMPS (blue), MM5 (red), and WRF (green) from the 500 and 700 hPa 
ensemble forecasts for the temperature, geopotential height, and wind components valid at OAK 

(left column) and REV (right column). 

 
The observed mean/standard deviation for temperature at 500 hPa (700 hPa) at OAK and REV are 
250.2/6.6 K, and 248.1/6.8 K (265.0/5.9 K, and 263.5/5.2 K), respectively (Fig. 3).  These values were 
taken as a basis for transformation into the events.  Generally, the scores are similar for all models and 
there are no significant differences between the results for a coastal vs. inland station.  Regarding the 
Bias, all models tend to underestimate the events, especially for the temperature and geopotential 
fields. This is mainly due to a greater number of missing events (C) in the models’ forecasts at lower 
levels.  Additional statistics of coastal vs. inland station data indicate that there are no significant 



9 

 

differences in POD as an effect of topographic complexity. All of the models showed Brier Scores less 
than 0.16. In this example, this is an empirical threshold value for all the models. The scores are 
similar at both levels.  COAMPS shows some greater values, especially at the 500 hPa level, possibly 
due to the inaccuracies in the boundary conditions provided by NOGAPS.  None of the models is 
superior at both levels and for all parameters, which confirms that the concept of a multi-model 
ensemble is valid and advantageous to use. 
 
With perturbation of the lateral boundary conditions, the spread of the ensemble is comparable with the 
RMSE of the ensemble mean, while the spread of the ICs (initial conditions) ensemble was 1/3 smaller 
after the eight-day forecast time step. Our other study also shows that with a ten-member LBCs (Lower 
Boundary Conditions) ensemble, the RMSE of the ensemble mean got smaller than the control run 
(Jiang et al. 2011). Table 1 shows the RMSEs of the temperature, geopotential height, and U and V 
wind components. Compared to the physics ensemble, the RMSEs of the wind components at 700 mb 
and 925 mb from the LBCs ensemble are smaller; while those of geopotential height are smaller at 500 
mb and 700 mb, and smaller at 500 mb for temperature. For wind components, at lower levels the 
LBCs ensemble shows smaller RMSE, however, for temperature and geopotential height it shows 
greater RMSE.  
 
The time series of temperature and geopotential height (Figure 4) show that in the LBCs’ ensemble 
there is a member that represented both the first and second fronts (member 38). Especially, the second 
front was missing in the ICs ensemble and the ensemble members with variations in physical 
parameterizations. 
 

 

 

Figure 4. Temperature (right) and Geopotential height (left) at 500hPa at OAK, CA, from LBCs 
ensemble (without perturbation of water vapor).  The “best” members are the ones  

showing the smallest RMSEs. 
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Figure 5. Same as Figure , but for Reno, NV. 
 
Figures 4 and 5 also show the importance of accurate lateral boundary conditions.  Note that GFS was 
not able to reproduce the front at the end of the period and consequently WRF was not able to predict 
the front.  However, several of the ensemble members indicate possible low probability of the 
temperature drop at the end of the period, even though the lateral boundary conditions were not 
accurate. Because of the variations in RMSEs by parameters and levels, there is not an easy way to 
determine which ensemble member is better.  
 
 
Table 1. RMSEs of temperature, geopotential height, U and V wind components at 500 mb, 700 mb, 

and 925 mb, from physics ensemble and LBCs ensemble, against radiosonde observations. 

Variable level Phys. ensemble LBCs ensemble 
Temperature 500 5.778 5.667 

700 5.679 6.402 
925 4.3712 6.285 

Geopotential height 500 143.433 131.944 
700 98.343 92.200 
925 78.51 97.118 

U-wind 500 9.722 11.040 
700 9.388 8.223 
925 7.943 6.732 

V-wind 500 14.558 15.106 
700 11.748 9.133 
925 7.091 6.928 

 
In order to gain insight into the behavior of the models and the effects of the various physical 
parameterizations, we examined the WRF outputs differences in which only one physical 
parameterization was varied while other three were kept constant. That can tell us the extent to which 
particular parameterizations affect simulation results and differences.  Figure 6 shows the effects on 
temperature at Reno and Oakland when three PBL schemes were changed while the other options were 
kept constant. 
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Figure 6. Effects of varying PBL schemes on the evolution of the temperature. Left column is Reno 

(KREV; 500 and 700 hPa), right column is Oakland (KOAK; 500 and 850 hPa). The root mean 
square errors are labeled in the legend. 

 
 
Note that the most of differences occur for the frontal passages and that the YSU and Pleim-Xiu 
schemes show more similarities compared to the MYJ scheme.  The temperature differences reach 20 
degrees or more, especially during the passages. The MYJ scheme tends to produce large differences 
compared to other two schemes.  The behavior of the temperature evolution at lower levels is more 
similar than aloft.  With comparison against radiosonde observation, the RMSEs from the MYJ scheme 
are 1 to 2 K smaller than those from the YSU or Pleim-Xiu schemes. 
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Figure 7. Effects of varying radiation schemes on the evolution of the temperature. Left column is 

Reno (KREV; 500 and 700 hPa), right column is Oakland (KOAK; 500 and 850 hPa). The root 
mean square errors are labeled in the legend. 

 
Although there are some differences in the temperature time series, it is obvious that the variations of 
the radiation schemes have a secondary effect compared to PBL scheme variation on the temperature 
evolution.  All three radiation schemes show a similar effect on the temperature at both locations and 
all levels. Maximum differences are generally less than 10 degrees.  According to the RMSEs, at 500 
mb the RMSEs from Grell-Devenyi scheme are smallest, while on 700 mb and 850mb, the RMSEs 
from Kain-Fritsch scheme are smallest. 
 
IMPACT/APPLICATIONS 
 
Although ensemble forecasting has been used for global predictions at major forecasting centers, 
regional and mesoscale ensemble forecasting is currently in the research and development stage.  
Furthermore, high-resolution multi-model ensemble forecasting holds promise for regional/mesoscale 
models' structure through exploration of physical parameterizations that are necessary to improve high-
resolution forecasts in complex terrain. Although our research is progressing, the currently available 
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real time forecasts are accessible by the Fallon Naval Air Station and will hopefully improve 
operational nowcasts and forecasts crucial to the Navy’s operations. 
 
TRANSITIONS 
 
Both the special set of four weather stations in the Fallon area [http://www.wrcc.dri.edu/] and the 
ongoing WRF operational forecasting system [http://www.adim.dri.edu/] have been developed as a 
complement to the forecasting and nowcasting at the Navy’s Fallon Naval Air Station.  The study will 
also provide guidance for future generations of multi-model ensemble forecasting for the Navy’s 
operations. In particular, the results provide valuable information regarding the future use of the 
COAMPS model for probabilistic forecasts. 
 
RELATED PROJECTS 
 
Dr. Koracin is a co-P.I. on an ARO Project entitled “Forecasting of Desert Terrain” where real-time 
experience and expertise is facilitating an interdisciplinary project linking dust emission modeling 
(McAlpine et al., 2010), mesoscale atmospheric predictions (MM5 and WRF) (Zabkar et al. 2010), 
Lagrangian Stochastic Random Particle Dispersion modeling (Koracin et al. 2011, Chen et al. 2010, 
Lowenthal et al. 2010), and Computational Fluid Mechanics simulations.  Dr. Koracin is a Lead 
Investigator for a Climate Modeling component of the multi-institutional NSF-EPSCoR Project on 
Climate Change, where they are developing new methods of weather and climate forecasting and use 
of satellite data assimilation for model evaluation (Jiang et al, 2011a).  He is a task leader on another 
NSF EPSCoR project for the development of the Cyber-infrastructure and workforce activities. They 
are also investigating predictability limitations and chaotic behavior in weather and climate predictions 
and methods of downscaling global model results to regional, mesoscale, and microscale applications 
(Jiang et al, 2010 & 2011b).  As a Principal Investigator on a DOE-NREL Wind Energy project, he is 
improving high-resolution forecasts in complex terrain (Jiang et al, 2011b). Dr. Koracin is a Principal 
Investigator on a DOE-Office of Science project, Simulating Climate on Regional Scale: North Pacific 
Mesoscale Coupled Air-Ocean Simulations Compared with Observations.  The main task is to fully 
couple the ocean model (POP) and the atmospheric model (WRF) over the open ocean and coastal 
regions and estimate current and future projections of the Kuroshio Current effects on Pacific climate. 
 
Dr. Lewis is involved in two projects that complement this ensemble research; (1) a variational 
analysis used to identify sources of error in dynamical prediction, and (2) analysis and prediction of 
dust storms over the western U.S.  Both projects are supported by NOAA and this ONR project. 
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