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LONG-TERM GOALS 

Propagation and reverberation of acoustic fields in shallow waters depend strongly on the spatial 
variability of seabed geoacoustic parameters, and lack of knowledge of seabed variability is often a 
limiting factor in acoustic modeling applications. However, direct sampling (e.g., coring) of vertical and 
lateral variability is expensive and laborious, and matched-field and other long-range inversion methods 
fail to provide sufficient resolution. The long-term goal of this work is to use a Bayesian inversion 
approach in combination with seabed reflectivity data to investigate and quantify spatial variability of 
seabed sediments in two and three dimensions. For proper quantitative examination of spatial 
variability, it is important to differentiate between parameter estimate uncertainty, model 
parametrization effects, and actual spatial variability. 

To date, the project has developed an approach to quantify spatial variability of seabed sediments along 
a track (Dettmer et al. 2009ab) of point measurements separated by several kilometers. More recently 
advanced and general trans-dimensional inversion techniques (Dettmer et al. 2010ab 2011a) have been 
developed which provide more realistic estimates of environmental parameter uncertainties than 
previously possible in the acoustics community. In addition, Dettmer et al. (2011b) developed a 
trans-dimensional sequential Monte Carlo (SMC) algorithm to carry out seabed parameter inference on 
large data volumes along range-dependent tracks, providing two-dimensional (2D) geoacoustic 
uncertainty models of high vertical and lateral resolution. Further development of this methodology is 
an ongoing effort that will lead to rigorous 2D and three-dimensional (3D) geoacoustic uncertainty 
estimation from towed-array data in complex shallow-water environments (Holland et al. 2011). 
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OBJECTIVES 

The objective of this research is to develop new methodologies to estimate 2D geoacoustic parameters 
and quantify uncertainties to permit prediction of sonar performance uncertainties, as a step towards full 
3D uncertainty estimation and verification. Highly informative seismo-acoustic reflectivity data 
collected along range-dependent tracks are used to carry out geoacoustic inference. Such data can be 
collected using ship-towed or autonomous vehicle-towed arrays (Holland et al. 2011) and geoacoustic 
uncertainties can be inferred using trans-dimensional SMC algorithms. One-dimensional inversion 
results of wide-angle reflection data are used as benchmarks at points along the track. Other available 
data can be used when available (e.g., high-resolution seismic, other towed-array acoustic data, AUV 
data, information from geologic interpretations) to improve results. The methodology is being 
developed using a variety of existing data. 

APPROACH 

To predict sonar performance uncertainties, 2D geoacoustic uncertainty models are needed along the 
track of interest. This project originally intended to develop such uncertainty models for the QPE 
experiment, where a ∼50 km x 50 km area off northeast Taiwan was chosen, including part of the 
Chilung shelf, the East China Sea shelf and upper slope. Unfortunately, weather and safety concerns 
prevented data acquisition. Thereafter, the focus shifted to spatially densely sampled wide-angle 
reflection data from the Malta Plateau in the Mediterranean Sea (Holland et al. 2011). These data 
provide a basis for developing and demonstrating the ability to recover rigorous high-resolution 2D 
geoacoustic uncertainty models. 

Inferring geoacoustic parameters requires the assumption of a model describing the observed physical 
system including the physical theory, its appropriate parametrization, and a statistical representation for 
the data-error processes. In the past, Bayesian inference has been applied widely to geoacoustic inverse 
problems; however, model selection and comparison has seen only limited applications in acoustics. In 
addition, ambiguity and subjectiveness in the choice of model causes parameter uncertainties that have 
been ignored in geoacoustic inversion. The choice of model parametrization strongly influences 
parameter uncertainty estimates, with under-parametrized models generally under-estimating 
uncertainties while over-parametrized models over-fit the data and over-estimate uncertainties (Dettmer 
et al. 2009a; Dosso and Dettmer 2011). Additionally, since the model is an approximation of the actual 
environment, the ambiguities resulting from this approximation cause parameter uncertainties that 
should be accounted for by integrating over the range of applicable parametrizations. In addition, 
parameter estimates can appear biased if an inappropriate parametrization is chosen. 

One approach to address these issues is to compute the Bayesian evidence, which measures the 
likelihood that the observed data occurred given the model under consideration. Bayesian evidence is a 
powerful but computationally difficult concept and was used by Dettmer et al. (2010b) in geoacoustic 
inversion to pick the most likely model parametrization. Bayesian evidence is particularly useful when 
an investigator is interested in how different choices of physical theory are supported by a measured 
data set, but can be computationally expensive when many possible environmental parametrizations 
(e.g., the number of sediment layers) need to be considered. To address the latter, a trans-dimensional 
formulation of the geoacoustic inverse problem has been developed, where the number of parameters 
(environmental, data-error model, etc.) is itself an unknown in the problem (Dettmer et al. 2010a). This 
results in a trans-dimensional posterior probability density (PPD) that intrinsically addresses model 
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selection and accounts for parameter uncertainty due to the range of model parametrizations by 
integrating over possible parametrizations rather than picking a single model. Trans-dimensional 
inference was introduced by Green (1995) and has since been applied to several problems in geophysics. 

To sample from trans-dimensional distributions, Green (1995) generalized the Metropolis-Hastings 
(MH) algorithm to the reversible-jump Markov chain Monte Carlo (rjMCMC) sampler that allows the 
Markov chain to transition between dimensions of the state space (i.e., the model parameter space) 
while maintaining detailed balance of the chain to obtain unbiased estimates. The rjMCMC formulation 
is based on an extended acceptance rule similar to MH acceptance and can be applied to a wide range of 
problems and dimension transitions. The rjMCMC methodology in this work also applies a partition 
modeling approach and trans-dimensional jumps of the birth-death form that allow for a straightforward 
implementation and application to AUV data. The partition model is applied to the layering structure of 
the seabed sediment by describing the sediment as an interval over a certain depth with layer interface 
locations determined by the data. The partition model together with a trans-dimensional approach 
results in a naturally parsimonious self-regularization that is driven by the data (Bodin and Sambridge 
2009; Dettmer et al. 2010a). Results combine the ability to resolve sharp discontinuities as well as to 
approximate smooth transitions (such as gradients) of arbitrary shape as determined by the data. The 
integrated “map” of interfaces shows increased probability where the data support structure. 

A significant challenge in trans-dimensional inversion is addressing data errors when serial data-error 
correlations are present. Such error correlations can be described by a covariance matrix in the 
likelihood function (Dettmer et al. 2009b; Dosso and Dettmer 2011). Point estimates of this matrix can 
be obtained by computing predicted data for a best-fit model and taking the difference of the observed 
data and the prediction as a sample of the true data errors. However, such estimates can be problematic 
in trans-dimensional inversion, as they are representative of a fixed-dimension only. Dettmer et al. 
(2011a) propose a parametric approach to data-error correlation modeling for trans-dimensional 
problems using autoregressive error modeling to address these issues. 

To apply trans-dimensional inversion to large data volumes along tracks in range-dependent 
environments, Dettmer et al. (2011b) developed a sequential method which is able to quantify 
geoacoustic uncertainty along a track in an efficient manner. The SMC (particle filter) algorithm uses 
rjMCMC steps, allowing the particles to find the seabed parametrizations consistent with information 
provided by data and prior knowledge. The algorithm can be applied to sequences of 
reflection-coefficient data acquired along tracks using towed or other arrays. 

WORK COMPLETED 

In the third year of this project, work has focused on extending new approaches to quantifying 
environmental parameter uncertainty for geoacoustic inversion (Dettmer et al. 2011ba). These new 
techniques have been applied to initially analyze data that were collected by Charles Holland and Peter 
Nielsen on the Malta Plateau by using an AUV with a Chirp source and a 32 element towed array. The 
170 core high performance compute cluster has been extensively used to support this research. The 
cluster is jointly funded by ONR and the Natural Sciences and Engineering Research Council (NSERC) 
of Canada. Several of the inversion algorithms for this project have been developed to take full 
advantage of the massively parallel architecture of the cluster. 
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Figure 1: True simulated environment [(b) and (d)] and posterior-mean model sequential inversion 
results [(a) and (c)] for sound velocity and density (attenuation not shown). 

RESULTS 

Results presented in this section focus on some of the research carried out this year to develop a new 
approach to quantify geoacoustic uncertainty along range-dependent tracks. A more complete account 
is presented in Dettmer et al. (2011a), Dettmer et al. (2011b), and Holland et al. (2011). 

Figure 1 shows a simulated environment for a track sampled by 170 consecutive data sets (Fig. 2). Each 
data set represents a spatially confined, independent part of the seabed, separated by ∼10 m. The true 
environment (Fid. 1) includes both smooth variations in geoacoustic properties along the track as well 
as several large and abrupt changes (including a geological fault and an erosional channel). The overall 
number of layers (not counting the basement) starts with 3 layers at ping 1, increases to 6 at the fault, 
decreases to 2 at ping 124, and again increases to 3. The data for the four pings in Fig. 2 highlight the 
significant changes caused by the fault and erosional channel. The fit of the particle cloud as 
represented by predictions for 200 randomly drawn particles and 95% highest probability density 
credibility intervals is also shown. 

Figure 3 shows the probability of interfaces as a function of depth along the track. This form of 
marginalization recovers layering structure in a manner similar to sub-bottom profilers. However, unlike 
standard sub-bottom profilers, Fig. 3 represents a quantitative map of true interface-depth probabilities 
that does not require an arbitrary scaling velocity to convert two-way time to sub-bottom depth. In 
addition, the interface-depth probability also indicates the sharpness of the discontinuity (i.e., the size of 
the impedance contrast and the depth interval over which the data are sensitive to it). The results show 
that interfaces are successfully identified by the partition model and are tracked from ping to ping where 
supported by the data. In addition, layers are successfully detected or deleted when they appear or 
disappear, respectively. 

The inversions carried out along the range-dependent track result in posterior distributions allowing for 
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Figure 2: Simulated reflection-coefficient data (crosses) and ensemble fit (dotted lines) for pings 
before and after the fault event [pings (a) 45 and (b) 46], and before and within the erosional 
channel [pings (c) 146 and (d) 152]. Also shown are the 95% HPD credibility intervals for the 

predicted data for the entire particle cloud (dashed). 
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Figure 3: Interface-depth probability distributions along the track. True interface locations are 
shown as dashed lines which are offset slightly for display purposes. 

detailed inference of various parameter properties, including parameter uncertainties and 
inter-relationships. Figure 1 shows the posterior-mean model results for the sequential algorithm, 
indicating that the true environment is successfully inferred from the simulated data. Figure 4 shows a 
detailed analysis of the parameter uncertainty (a) just before and (b) just after crossing the geologic 
fault. Geoacoustic parameter uncertainties are shown in terms of marginal profile distributions that 
illustrate the uncertainty of geoacoustic parameters as a function of depth. Profile marginals are 
considered for velocity, density, and attenuation. The true environment is given as a dashed line in the 
profile marginals. Further, the location of the results for the pings is marked as a dashed line along the 
track to emphasize that such posterior analysis can be displayed for any ping of interest. In addition, 
interface probability marginals are plotted as a function of depth, quantifying the probability of interface 
locations. Interface probability marginals such as these are the basis for interface probability maps 
(Fig. 3). Marginal distributions of the number of interfaces in the partition show the support of the data 
for the different model parametrizations. The number of interfaces detected by the trans-dimensional 
SMC algorithm does not change when the fault is crossed since the velocity and density contrasts are 
very small between the top-most sediment before the fault and the top-most sediment after the fault. 
The interface probability in Fig. 4 shows a wider spread and the profile marginals show some 
complicated (multi-modal) structure that is likely due to the difficulty the fault poses for algorithm 
convergence. However, the results quickly stabilize over the next few pings following the fault. 

Figure 5 shows inversion results of applying the SMC algorithm to data collected by Charles Holland 
and Peter Nielsen using an AUV towed array with 32 hydrophones. The experiment was carried out on 
the Malta Plateau, Mediterranean Sea. Due to the experiment geometry (AUV 12 m above the seafloor, 
source and array towed 10 m behind the AUV, 1 m hydrophone spacing), the reflection coefficient data 
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Figure 4: Profile marginal distributions for (a) ping 44 before the fault and (b) ping 46 immediately 
after the fault. True parameter values are given as dashed lines and the location of the pings is 

indicated as a dashed line along the track. 
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Figure 5: Profile marginal distributions for ping 131 of the AUV measured data. The mean velocity 
model along the track is given in the top-left panel with the location of ping 131 indicated as a 

dashed line. The top-right panel shows the interface marginal distribution, and the center panels the 
interface-, velocity-, density-, and attenuation-depth marginal profile distributions. 
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Figure 6: Inversion results for AUV-measured data in terms of posterior mean models for (a) velocity 
and (b) density along the fist 300 pings of the track. 

shown in the bottom row of Fig. 5 are the spherical reflection coefficient. To carry out the inversion, 
Holland and Dettmer developed an efficient reflection-coefficient forward model that accounts for 
spherical-wave effects (by means of plane-wave decomposition Holland et al. (2011)). The model is 
efficient enough to be used in a trans-dimensional inversion (a significant challenge), given the UVic 
parallel computing facility. 

The algorithm was applied to every 5th ping for 60 pings, providing results covering the first ∼300 
pings of the AUV track. Figure 6 shows the mean velocity and density structure along the first ∼1.5 km 
(300 pings) of track. It can be seen that some consistent structure exists along the track, in particular, a 
high-velocity layer between 2- and 4-m depth. Other weaker layers are also present in shallow parts of 
the seabed. The basement structure is much less resolved which is common for reflection-coefficient 
data. 

IMPACT/APPLICATIONS 

The ability to obtain seabed parameters remotely (i.e., without direct sampling) has important 
implications for science (e.g., providing data for understanding sediment processes), the Navy 
(improving databases for ASW and MCM), as well as many commercial applications (pipeline or cable 
laying). A particular strength of the present work is quantifying the uncertainties of the seabed 
parameters for large data volumes and in a rigorous manner that has not to date been available in 
geoacoustic inversion. Two-dimensional geoacoustic uncertainty models will impact the reliability and 
quality of transmission loss prediction. 

RELATED PROJECTS 

• Broadband Clutter JRP project (NURC, ARL-PSU, DRDC-A, NRL) 

• ONR QPE Uncertainty Program 

• Dossos NSERC Discovery Grant “Geoacoustic Inversion” (2009-2014) at the University of 
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Victoria 

•	 “Bayesian ambient noise inversion for geoacoustic uncertainty estimation” (2011–2012, Jorge 
Quijano ONR Postdoctoral Fellowship N000141110214) (Quijano et al. 2011). 

•	 “Bayesian inverison of seabed scattering data” (2011–2013, Gavin Steininger ONR PhD
 
Fellowship N00014110213).
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