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LONG-TERM GOALS 
 
The long term goal is to develop a methodology for using synthetic aperture radar (SAR) data to 
improve characterization of the winds and waves generated by typhoons in the western Pacific Ocean. 
 
OBJECTIVE 
 
The objective is to develop a variational inversion algorithm based on the SWAN model to estimate 
the near-surface typhoon wind field from SAR data. 
 
APPROACH 
 
Third-generation wave spectrum models such as SWAN can be used to predict wind-generated waves.  
Combining SWAN and a model relating the SAR-image spectrum to the computed wave spectrum, 
one can predict the SAR-image spectrum which results from a known wind field.  Using variational 
techniques, this relationship can be inverted to estimate the wind field from SAR data.  This approach 
uses adjoint versions of the SWAN and SAR models to calculate the gradient of the error of the 
predicted SAR data with respect to the input wind field.  This gradient is used to iteratively adjust the 
wind field to produce a wave field from SWAN that yields a best-fit to the SAR data.  
 
WORK COMPLETED 
 
An algorithm for estimation of temporally evolving winds has been developed.  It is based on an 
existing algorithm for the SWAN wave model and SAR data, developed to estimate the ocean-wave 
field for a near-shore region for stationary conditions using SAR data (Walker 2006).  The algorithm is 
variational in nature and is based on the SWAN 40.51 ocean-wave-spectrum model (Ris et al. 1999, 
Booij et al. 1999) coupled to the nonlinear SAR-spectrum model of Hasselmann and Hasselmann 
(1991).  In its original form, the algorithm was used to estimate the boundary conditions for SWAN 
that result in a wave-spectrum prediction which best fits the SAR data.  An expression for the gradient 
of the cost function (the error in the estimates of the data) with respect to the input wind field in terms 
of the forward and adjoint solution was first developed, and then the algorithm was extended to include 
wind estimation for non-stationary conditions.  This required:  (1) extension of the SWAN code to 
efficiently store the entire five-dimensional forward solution; (2) extension of the adjoint SWAN 
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solver to work for non-stationary conditions, to read in the forward solution time history, and to ingest 
observation data at arbitrary locations and times; and (3) development of ancillary codes to calculate 
the gradient from the forward and adjoint SWAN solutions, adjust the wind field, and control the 
iteration process.  These have been completed.  In addition, the wind-wave generation modeling in 
SWAN (Wu 1982) was updated to include high-wind-speed effects on the drag coefficient correlation 
consistent with the results of Donelan et al. (2004). Application of the resulting algorithm to some of 
the initial SAR data from the ITOP/TCS10 field experiment has also been completed and is shown 
below.   
 
RESULTS 
 
The algorithm structure has now been finalized, and a graphical description is shown Figure 1.  The 
algorithm makes use of operation forecast data (as a first guess for winds), models and adjoint models 
(the SWAN wave spectrum model and the Hasselmann & Hasselmann 1991 SAR spectrum model and 
corresponding adjoints), ancillary data such as bathymetry, and SAR data (presently obtained from 
CSTARS).  The algorithm outputs are wind and wave products: improved wave spectra and improved 
estimates of the wind field.  Estimates begin with a first guess wind field for the region obtained from 
operational wind forecasts.  An estimate of the wave spectrum and the SAR image spectrum are 
calculated.  The SAR spectrum is compared to that for the data (from CSTARS) and the difference is 
fed back through adjoint SAR and SWAN models.  The gradient of the error in the estimated SAR 
spectrum with respect to the wind field is calculated from the adjoint wave spectrum.  This gradient is 
used to adjust the wind field using a descent algorithm and the steps are repeated until the wind field 
converges and the SAR spectrum is a best fit.   

 
 

Figure 1.  Algorithm flow chart.  The algorithm makes use of operation forecast data (as a first 
guess for winds), models and adjoint models (the SWAN wave spectrum model and the Hasselmann 
& Hasselmann 1991 SAR spectrum model and corresponding adjoint models), ancillary data (such 
as bathymetry), and SAR data, (presently obtained from CSTARS).  The algorithm outputs are wind 

and wave products, improved wave spectra and improved estimates of the wind field. 
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Figure 2.  ECMWF winds and a Radarsat-2 SAR image for 2100 GMT during Typhoon Megi on 
15 October 2010.  The red box on the wind field shows the location of  the SAR image, and the 

ECMWF maximum winds are about 32 m/s. 

 

The algorithm has been applied to Radarsat-2 data for Typhoon Megi at 2100 GMT on 
15 October 2010.  A second Radarsat-2 data set for Megi at 2142 GMT on 17 October 2010 has also 
been analyzed but will not be shown in detail here.  The SWAN model is run with a one-hour time step 
on a 0.25 degree grid using bathymetry derived from the GEBCO 30 arcsec database, smoothed and 
interpolated onto a 0.125 degree grid.  The initial guess for the winds is based on ECMWF operational 
forecast data, consisting of analysis fields at 0000 GMT and 1200 GMT and forecast fields at the 
intervening three-hour intervals, all on a 0.25 degree grid;  linear interpolation is used in SWAN to 
calculate the winds at one-hour intervals.  Figure 2 shows the winds for 2100 GMT on 15 October, 
along with the Radardsat-2 SAR image, with the location of the SAR image shown on the wind field.  
As can be seen the eye of the storm is located near the southern boundary of the SAR image, but the 
image contains most of the high-wind speed region in the right-front quadrant of the storm.     
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Figure 3. Comparison of estimated and observed SAR spectra for initial-guess ECMWF winds for 
Typhoon Megi on 15 October 2010 at 18 deg N and various longitudes.  From left to right: 

estimated ocean wave spectra, estimated SAR spectra, observed SAR spectra and difference between 
estimates and observed SAR spectra. 

 
Figure 3 shows wavenumber spectra for various quantities at integer longitudes and 18 degrees N 
latitude in the region of the SAR image for the initial-guess winds.  (The wavevector axes are range 
direction on the ordinate and azimuth direction on the abscissa.)  From left to right are shown the wave 
spectra, the estimated SAR spectra, the observed SAR spectra and the difference between the estimated 
and observed SAR spectra.  A large variation in significant wave height is in evidence as is a large 
variation in imaging geometries.  The SAR model performs well as evidenced in the difference spectra 
which indicate the largest source of error corresponds to the wave spectrum (not the portion of the 
spectrum representing speckle noise).   
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Figure 4. Comparison of estimated SAR spectra  using SWAN/SAR winds for Typhoon Megi on 15 
October 2010 at 18 deg N and various longitudes.  From left to right:  estimated ocean wave spectra, 

estimated SAR spectra, observed SAR spectra and difference between estimates  
and observed SAR spectra. 

 
 
A comparison of spectra similar to that shown in Figure 3 is shown for the final estimated winds in 
Figure 4.  Again spectra are shown for integer longitudes at 18 deg N in the area of the SAR image, 
and from left to right they correspond to estimated wave spectra, estimated SAR-image spectra, 
observed SAR-image spectra, and the difference between the estimated and observed SAR spectra.  
Here we can see that the wave spectra have decreased in significant wave height, and the agreement 
between the predicted and observed SAR spectra has improved.  The  decrease in wave height can be 
traced to lower estimated winds at earlier times even though, as will be shown below, the 
contemporaneous winds have increased.   
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Figure 5. Comparison of first-guess and final estimated winds and wave heights for the time 
of the SAR image.  The first-guess winds have a maximum of 32 m/s, while the final 

estimated winds have a maximum of 51 m/s, which compares favorably with the best-track 
estimate of 38-47 m/s.  The final estimate of the significant wave height has decreased to 
about 7 m from 9 m for the first-guess winds;  this is due to a reduction in estimated wind 

speed at earlier times. 
 
Figure 5 shows a comparison of the initial-guess and final estimated winds and significant wave height 
for 2100 GMT on 15 October, the time of the SAR data collection.  For the first-guess (ECMWF) 
winds, the maximum wind speed is about 32 m/s.  For the final estimate, the maximum wind speed is 
51 m/s.  This result is in good agreement with the best-track estimate of 38-47 m/s for the maximum 
sustained surface winds.  It should be noted that the structure of the storm has been modified in the 
final results with the high-wind region moving roughly one degree to the west.  While the maximum 
winds have increased, areas of low wind speed have also been produced just behind the maximum 
wind region, as well as earlier in time. As a results of these decreased winds, there has been a decrease 
in the significant wave height from about 9 m for the intial-guess winds to roughly 7 m for the final 
estimate.   
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IMPACT/APPLICATIONS 
 
If successful, the algorithm developed here will enable improved operational prediction of tropical 
cyclone evolution. 
 
RELATED PROJECTS  
 
This program is part of the ITOP Departmental Research Initiative 
 
REFERENCES  
 
Booij, N., Ris, R.C. & Holthuijsen, L.H.  1999  A third-generation wave model for coastal regions:  1. 

Model description and validation.  J. Geophys. Res.  104, 7649.  

Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown & E. S. 
Saltzman, 2004:  On the limiting aerodynamic roughness of the ocean in very strong winds. 
Geophys. Res. Letters 31, L18306. 

Hasselmann, K. & Hasselmann, S.  1991  On the nonlinear mapping of an ocean-wave spectrum into a 
synthetic aperture radar image spectrum and its inversion.  J. Geophys. Res. 96, 10 713–10 729. 

Ris, R.C., L.H. Holthuijsen and N. Booij  1999  A third-generation wave model for coastal regions:  2. 
Verification.  J. Geophys. Res. 104, 7667. 

Walker, David T.  2006  Assimilation of SAR imagery in a nearshore spectral wave model.  Report No. 
200306-F. General Dynamics Advanced Information Systems, Ypsilanti, MI. 

Wu, J., 1982: Wind-stress coefficients over sea surface from breeze to hurricane, J.Geophys.  
Res. 87, C12, 9704-9706. 

 


