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LONG-TERM GOALS  
 
The proposed work investigates quantitatively the interaction between wave, currents and seabed 
sediments in shallow water over a bed characterized by heterogeneous, mud-dominated sediments. The 
long-term goal of is to develop an approach to characterize accurately the state of a muddy sea bed, 
based on minimal prior information about bed sediment, and remote observations of surface waves and 
currents.  
 
OBJECTIVES  
 
The objective of the project is to investigate the possibility to predict bottom sediment processes using 
field data collected during the MURI Wave-Mud experiment. The data will be used to validate the 
model and propose simplifications for operational implementations. These goals are aligned with all 
three major ONR research thrust areas: nearshore, estuarine and riverine processes; remote sensing of 
the coastal environment; and sediment transport.  
 
APPROACH  
 
Bottom tripods were deployed on the Atchafalaya inner shelf to carry out time-series examination of 
fluid, flow and suspended sediment conditions for 1-2 month periods. Tripod deployments were 
supplemented by ship-based coring at the sites and meteorological observation time-series 
instrumentation deployed on nearby oil and gas platforms.  
 
WORK COMPLETED  
 
Field experiment and data analysis: The “Sub-bottom Field Experiment” project provided information 
about the evolution of the bed under wave action. In support the data collection effort of the 
Traykovski/Trowbridge group, the project deployed instrumentation to capable of high-resolution 
measurements of full water column hydrodynamics and near-bed sediment dynamics. An example of 
an instrumented platform is shown in Figure 2. 
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RESULTS  
 
Field Experiments: Figure 3 shows and example of observations of waves and bed state response (this 
case: a frontal storm observed in March 2008). The event is associated with fairly energetic southward 
winds and currents which seem to be due to a superposition of low tide and the flushing of the coastal 
setup post-frontal storm passage. The sea-floor response can be inferred from the PC-ADP acoustic 
backscatter (Figure 3c), based on the location of maximum intensity. At P3, bed elevation changes by 
10-15 cm, consistent with previous observations (Jaramillo et al., 2008; Sheremet et al., 2010), and 
suggesting a significant bed reworking and wave-sediment coupling.  
 
IMPACT/APPLICATIONS  
 
Much of the present and near-future Navy capability on predicting regional and nearshore processes 
assumes a sandy (non-cohesive) sedimentary environment. The present research enhances this 
capability by providing field data essential for model validations and by identifying processes and 
developing mechanisms which allow expansion into areas with significantly different characteristics.  
 
One of the direct implications of the present research is the developing the foundation for the 
development of a coupled hydrodynamic-seafloor prediction model for muddy environments.  
 
RELATED PROJECTS  
 
The project represents a convergence of several directions of research (near-shore wave modeling, 
cohesive sediment transport, the development of operational forecasting tools for near-shore 
circulation and waves, increase use of remote sensed information, etc) and etc), and collaboration 
efforts circumscribed by the MURI-lead effort to understand wave-mud interaction.  
 
The field experiment is coordinated in collaboration with other MURI related projects. The scope and 
approach of the present research builds on the strong, ongoing collaboration between U. Florida and U. 
Texas and U. Delaware, illustrated by a number of papers in print and in preparation. The field work 
was coordinated with with the MURI group of researchers, especially regarding observational data 
sharing (boundary layer and sediment characteristics, Traykovski, Kineke, Dalrymple), and other 
researchers that participated in the MURI-lead field experiment (Elgar, Raubenheimer, Allison). The 
work represents a natural continuation and expansion of the PIs ongoing research projects. The 
proposed work also builds on our previous collaborations on wave modeling with Kaihatu (Texas 
AM).  
 
This research also benefits from, and enhances, parallel research (Sheremet) funded under NOPP to 
improve existing operational wave-forecasting systems (WaveWatch III, SWAN, etc) by developing 
and implementing numerical modules for wave-mud interaction and nonlinear waves physics.  
 
The bottom boundary layer fluid mud modeling component of the proposed work also benefits from, 
and enhances parallel research (Hsu) funded by ONR to develop multidimensional, turbulence 
resolving model for fine sediment transport driven by waves and tidal currents.  
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Figure 1: a) Plan view of the Atchafalaya shelf showing the location of the experiments conducted 
in 2008 (light red crosses, platforms P1-3) and 2010 (MURI) red cross. b) Magnified area of the 

2010 MURI experiment with the locations of the three MURI platforms (blue triangles) and 
Sheremet & Allison array (red crosses). An ADCP and a pressure sensor were deployed farther 

offshore (approx. 18-m depth) to provide boundary conditions for wave propagation. 
 
 

 
 
Figure 2: Left: An instrumented platform ready for deployment. Deployed instrumentation included 
downward-looking PC-ADP (A), upward-looking ADCP (B), an ABS (C), a CT probe (D), turbidity 
sensors – one OBS-5 (F), and two OBS-3 (E, one is partially visible behind the OBS-5). An acoustic 
pinger (G) is used to locate the deployed tripod. Right: the pore-pressure array ready to be deployed 

(Spring 2010) and his designer, Uriah Gravois (U. Florida graduate student). The black cylinder 
contains the electronics (Onset Computer Corporation Tattletale 8 Data logger, Persistor Memory 

Expansion (Paroscientific Pressure Sensor included in the housing). The long white cylinder is the 
probe, containing 4 sets of pore-pressure sensors and thermistors. Two Sontek Hydra ADVs and 

their battery canister (large white cylinder) can also be seen mounted on the tripod. 
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Figure 3: Observations of waves and suspended sediment concentration (SSC) at two 
platforms (P1 and P3, see Figure 1). Left: P1 (29 deg 11.815, 91 deg 36.731 W), 7-m depth. 
Right: P3 (29 deg 15.574, 91 deg 34.267W), 4-m depth. (a) Significant wave height of sea 

(blue, f>0.2 Hz) and swell (red, f≤0.2 Hz) bands. Multi-color curve shows the wind speed and 
direction. (b) Normalized spectral density of the sea surface elevation. (c) Peak wave 

propagation direction for each frequency band in the power spectrum (for both winds and 
waves, the directions indicate where the flow is toward, i.e., N means toward North). The wave 

directions are shown only for frequencies with spectral density above some “significance 
threshold” (arbitrary). (d) Normalized acoustic backscatter records of the  

downward-looking PC-ADP. 
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