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LONG-TERM GOALS  
 
The Navy has a requirement to rapidly and covertly characterize the coastal environment in support of 
Joint Strike Initiatives.  Over the past 16 years we have demonstrated that spaceborne hyperspectral 
remote sensing is the best approach to covertly acquire data on shallow water bathymetry, bottom 
types, hazards to navigation, water clarity and beach and shore trafficability to meet those 
requirements.  The long term goal of this work is to put a hyperspectral imager capable of making the 
appropriate measurements in space to demonstrate this capability.  
 
OBJECTIVES  
 
The objective of this work is to put a hyperspectral imager in space to demonstrate the ability to 
covertly acquire data on shallow water bathymetry, bottom types, hazards to navigation, water clarity 
and beach and shore trafficability.  Our work takes advantage of the Hyperspectral Imager for the 
Coastal Ocean (HICO) currently flying on the International Space Station (ISS).  As HICO Project 
Scientist I work to enhance community awareness of the need for and utility of hyperspectral imaging 
of the coastal ocean. Our work includes advancing methods of on-orbit calibration and product 
validation, and processing and analyzing hyperspectral data of the coastal ocean. In particular in this 
study we are using HICO data to characterize the properties of river systems and coastal waters. 
Conventional ocean color sensors have 1 km pixels and a few spectral channels; these have not proven 
adequate to resolve the complexity of river systems.  HICO was designed to sample the coastal ocean 
and has 95 m GSD and 88 spectral channels suitable to resolve river systems and  other coastal 
features.  To make the best use of this data we are developing algorithms and approaches for resolving 
the constituents of river plumes, harmful algal blooms and other complex systems.  
 
In June 2010 the Korean Geostationary Ocean Color Imager (GOCI) was launched and it is providing 
the first ocean color imagery from geostationary orbit for a region around Korea, Japan and China.  
GOCI samples the region every hour (vs. once every few days for HICO) and is providing the first data 
suitable to resolve phytoplankton physiological responses, and coastal physical dynamics including 
tidal and plume dynamics on an hourly basis.  This year we initiated work to create and test new 
algorithms for coastal products designed to take advantage of the high resolution data of HICO and 
GOCI. In particular, HICO, with its higher spatial and spectral resolution, allows a more accurate 
estimation of shallow water bathymetry and what is in the water column. While GOCI, with its hourly 
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sampling, enables estimation and modeling of coastal `dynamics’ --- how the murky coastal water is 
mixing and where it might be going next.  
 
APPROACH  
 
Five tasks are planned for the four year period of this grant (FY2010-2013): 
 
1.   Develop, test and evaluate algorithms for deriving optical properties, chlorophyll, suspended 

sediments and CDOM for coastal systems including river systems.  We will work with MERIS 
and HICO data and use the Columbia River system and adjacent coastal waters as a test area for 
this work.   

 
2.   Collect and analyze HICO data for the Yangtze River and adjacent coastal regions in China.  Once 

we have developed the algorithms and approaches that work for the Columbia River we will test 
and evaluate those algorithms for the Yangtze and other river systems.  The goal is to validate our 
algorithms and to further our understanding of this important river and the East China Sea which 
are rapidly changing due to the development of the Three Gorges Dam and continued urbanization 
of China.   

 
3.   Conduct a direct comparison of HICO and GOCI data for representative scenes in the GOCI 

imaging area.  This will include Tokyo Bay, the Han and Yangtze Rivers and adjacent areas where 
HICO data is available.  GOCI samples the entire region hourly, so if it is clear for the HICO data 
collection, we should have GOCI data within one hour for comparison.  Comparison will include 
geolocation, radiometric and spectral calibration, and other properties to assure that we can use the 
two data sets together for the proposed analysis. 

 
4.  Using algorithms developed for HICO data that take advantage of its unique spectral properties, 

assess the detailed shallow water bathymetry and structure of the Han River delta and mud flats 
for available HICO scenes.  Compare these results with GOCI data time series for the same time 
and develop algorithms for shallow water bathymetry using GOCI data.   Then use the time series 
of GOCI data to follow the river dynamics and water depth changes over a day/tidal cycle.  

 
5.   Develop product algorthims that use HICO data to ‘upscale’ GOCI data spatially and spectrally. 

That is, attempt to create a ‘merged’ data products that have GOCI’s temporal coverage, and 
HICO’s spatial/spectral coverage. 

  
WORK COMPLETED  
 
Our work is focused on the coastal ocean and a major issue for the coastal ocean is that the standard 
case 1 algorithms used to calculate chlorophyll and other water properties assume that phytoplankton 
with an associated level of Colored Dissolved Organic Matter (CDOM) and water itself are the only 
optically active components.  In coastal waters high levels of CDOM from rivers and coastal runoff, 
large phytoplankton blooms, sediments from rivers, or resuspension from the bottom are all significant 
optical components that need to be considered as part of the optical signature (Davis, et al., 2007).  For 
example the standard MODIS and MERIS products give false high chlorophyll values for the 
Columbia River Plume (Fig. 1).  The MERIS neural network (algal 2) algorithms are designed for 
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European coastal waters and do a better job of separating chlorophyll and suspended sediments.  We 
are working to modify them for Oregon coastal waters and eventually for use with HICO data.  Note 
also that the 1 km MODIS data does not adequately sample the Columbia River mouth including the 
mixing zone that is order 50 km inland from the coast.  MERIS 300 m data does a better job of imaging 
the estuary but HICO has 95 m GSD and full spectral data (88 channels covering the 400 – 900 nm 
spectral region) for this example river system.   
 
 

 
 

Figure 1. Satellite ocean color images of the Columbia River estuary and plume on September 10, 
2009.  Left, is the MODIS standard 1000 m chlorophyll product.  This algorithm gives false high 

values for the river system (red in this color scale) due to the high suspended sediments in the river 
water. The large pixels do not image the river mouth effectively.  Center is the MERIS 300 m 

standard chlorophyll product (algal 1).  The river mouth and near shore plume are black indicating 
the algorithm does not give a valid product for these waters and the results are masked out.  Right is 

the MERIS neural network coastal chlorophyll product (algal 2) which shows reasonable 
chlorophyll values for the river mouth and nearshore plume.  The 300 m MERIS pixels do a much 

better job of imaging the river mouth. 
 
The Hyperspectral Imager for the Coastal Ocean (HICO; Lucke et al. 2011; Corson and Davis, 2011) is 
an imaging spectrometer based on the PHILLS airborne imaging spectrometers (Davis et al. 2002). 
HICO is the first spaceborne imaging spectrometer designed to sample the coastal ocean. HICO  
samples selected coastal regions at 95 m with full spectral coverage (400 to 900 nm sampled at 5.7 nm) 
and a high signal-to-noise ratio to resolve the complexity of the coastal ocean. HICO is sponsored by 
the Office of Naval Research as an Innovative Naval Prototype (INP), to demonstrate coastal products 
including water clarity, bottom types, bathymetry and on-shore vegetation maps. As an INP, HICO also 
demonstrates innovative ways to reduce the cost and schedule of this space mission by 80% by 
adapting proven PHILLS aircraft imager architecture and using Commercial Off-The-Shelf (COTS) 
components where possible. 
The HICO program was initiated in February 2006. In January 2007 HICO was selected to fly on the 
Japanese Experiment Module Exposed Facility (JEM-EF) on the International Space Station. 
Construction began following the Critical Design Review on November 15, 2007. HICO was 
completed in July 2008 and it was integrated into the HICO and RAIDS Experimental Payload (HREP) 
in August 2008. HICO is integrated into HREP and flown with support and direction from DOD’s 
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Space Test Program. HREP was launched on the Japanese H-2 Transfer Vehicle (HTV) September 10, 
2009.  The HTV rendezvoused with the ISS on September 17,  2009.  HICO was installed on 
September 23 and collected its first images on September 24, 2009.  To date over 6000 HICO scenes 
have been collected, procesed to level 1b and archived.  The researech community can access HICO 
data throught the OSU HICO website: http://hico.coas.oregonstate.edu.  
 
For the past three years we have been collecting HICOTM data for the Columbia (Fig. 2) and Yangtze 
Rivers (Fig. 3).  There are many constraints on data collection with this demonstration instrument 
including being limited to one image per orbit for data transmission, gaps due to the ISS orbit and 
operations and clouds.  However, we now have a number of good images for both rivers and are 
continuing to collect imagery at both locations.   
 
Yangtze River in China is a major source of sediments and nutrients to the China Sea and Straits of 
Taiwan.  In a comparison of chlorophyll products from MODIS and HICOTM (Fig. 3) we see the big 
picture in the MODIS data, but far more detail in the HICOTM data.  Also, note that the MODIS 
algorithms fail over waters with high sediments, but the HICOTM data is not saturated and the HICOTM 
algorithm returns useful data even in these high sediment waters.   After on-orbit vicarious calibration 
(Gao et al, 2012) the at sensor radiances are very close and where the MODIS data is not saturated the 
match of chlorophyll values is very good. 
 
 
 

 
 

 
Figure 2. Psudocolor image of the Columbia River mouth and adjacent coastal waters made with 3 
channels of HICO data.  The 90 m HICO data shows many more details including shallow bars in 

the river, the bridge from Astoria Oregon across to Washington, breakwaters and the complex 
mixing patterns as the plume moves offshore. HICOTM is a trade mark of the  

US Naval Research Laboratory. 
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Figure 3. Nearly coincident MODIS and HICOTM images of the Yangtze River, China taken on 
January 18, 2010. Left, MODIS image (0500 GMT) of Chlorophyll-a Concentration (mg/m3) 

standard product from GSFC.  White areas are regions where sensor channels saturated and the 
algorithm failed to produce a product. The box indicates the location of the HICO image relative to 

the MODIS image.  Middle, HICO image (0440 GMT) of Chlorophyll-a Concentration (mg/m3) 
from HICO data using ATREM atmospheric correction and a standard chlorophyll algorithm.  Left, 
comparison of the at sensor radiances from HICO (red) and MODIS (blue) for location X in HICO 

image showing the accurate on-orbit calibration for HICO  (Gao, et al, 2012). 
 
 
To validate MERIS and HICO data products for the Oregon Coast we have been collecting profiles of 
downwelling irradiance and upwelling radiance using a Satlantic HyperPRO (Fig. 4).  The HyperPRO 
is a free falling optical profiling system that collects profiles of spectral Lu and Ed and chl 
fluorescence, backscatter, T and salinity.  The system is calibrated by Satlantic and we use the Satlantic 
software for processing including all of the latest corrections based on NIST calibrations.    
 

 
 

Figure 4.  Collecting HyperPRO data and an example data set from the MILOCO cruise off the 
Oregon coast taken June 4, 2009.  (Left side of the figure shows a research associate lowering the 
HyperPRO instrument over the side of a small research vessel.  The center panel shows the depth 
profile of the spectra of downwelling irradiance.  The right panel shows the depth profile of the 

spectra of the upwelling radiance collected with the HyperPRO instrument.) 
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This system produces high quality measurements of spectral remote sensing reflectance (Rrs) for direct 
comparison to the HICO data after atmospheric correction.  The HyperPRO data together with other 
data collected on each station including HPLC pigments, productivity, CDOM, suspended sediments 
are placed in the MILOCO data base with web access. 
 
A key focus of our effort is to differentiate the river plume, Harmful Algal Bloom (HAB), or other key 
spectral feature from the background signal and to find a rapid way of processing the data to produce a 
river plume product.  While standard methods exist for atmospheric correction of land (Gao, et al. 
1993) and open ocean (Gordon and Wang, 1994) data atmospheric correction of coastal ocean data 
remains problematic.  With that in mind our method uses techniques that do not need atmospheric 
correction, but start directly with the calibrated at-sensor radiances.   
 
The basic idea for the indicator methods is to first estimate what a typical `dark pixel’ spectrum for a 
region of interest, and second (after subtracting this `typical dark pixel’) to examine the sensitivity of 
the residual spectrum, including spectral derivatives, to target products --- sediment, chlorophyll, or 
sampled pixels know to contain pigments of interest, such as phycocyanin commonly found in 
cyanobacteria associated with HABs. That is, the indicators are meant to be `fingerprints’ for the target 
product (Bustillos-Guzman et al. 2004). 
 
The starting point is converting the at-sensor radiance data to a normalized reflectance by converting to 
the apparent at-sensor reflectance.  This is computed using the Naval Research Lab’s tafkaa_6s code 
(Gao, et al. 2000) according to the formula: 

                                                                                                                         (1) 
where Lt is the observed radiance, E0 is the solar irradiance, and  µ0 is the  cosine of the solar zenith 
angle. Next we create a reference spectrum for each image. More specifically, we try to estimate a dark 
ocean pixel from looking at the sensor radiance, 
 

r * obs(l ) = r a(l ) + t  r w(l ) 
   
where  r a accounts for atmospheric and sea-surface reflection,  r w picks up contributions below the 
water surface, and t  denotes the transmittance from the water surface to sensor. In developing 
‘indicator maps,’ we consider a slightly different decomposition. Namely, we start by imagining, at 
every pixel, the at-sensor radiance we would see if the water was clear; a so-called dark water pixel. 
This is an ‘idealized’ quantity, but the difference between this ideal radiance signal, and the observed 
signal at sensor, provides information about what is in the water, which is relatively independent of 
what is in the atmosphere. Thus it is a good starting point for creating an ‘indicator’ function for what 
is in the water. 
 
In our approach a dark water pixel will be defined ‘empirically,’ based on an image, or collection of 
images, of a region of interest, and choosing pixels, or patches of pixels, which determine ‘dark water,’ 
or water free of river plume materials, or other features of interest, for that region. So in practice, the 
dark water pixel could contain some background material in the water column that we will consider as 
‘clear water,’ or a dark water pixel, which is typical for the region. We call this type of pixel, which 
contains some below water signal, a regional dark pixel, but in the following discussion we will refer to 
is as a dark pixel. It is the background signal from which we start any further signal processing. 

(2) 
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Mathematically we can write this decomposition as: 
 

r * obs(l ) = r a(l ) + t  (r d(l ) + r b(l ))   
= r M(l ) + r I(l )   

 
where  r M(l )  is the modeled spectrum, and r I(l ) is the ‘indicator’ spectrum, it is simply the residual 
between the at sensor radiance minus any modeling we do for the spectrum (Tufillaro and Davis 2010). 
If r M is chosen as a dark pixel in the scene than it is what is normally referred to as ‘dark pixel 
subtraction’, a very simple but often effective scheme for atmospheric correction. The terms r d(l ) and 
r b(l ) are called the ‘dark water’ and ‘bright water’ contributions to r w(l ) respectively. The trick to this 
approach is finding (a typically empirical) model of dark pixel spectra that allow us to create a data 
based decomposition of r * obs(l ) to identify one or more dynamic water constituents of interest.  
 
In the visible spectrum the dominant spectral feature is Rayleigh scattering which has the spectral form 
of a negative power function.  To create an empirical model to fit the ‘dark water’ pixels we take a 
guess at the following functional form: 

r M(l n) = (a + b(l n- l 1))-4 

         
where a and b are model parameters which are to be estimated from the spectral data λn and r M(l n) and 
λ1 is the first value of the wavelength in data set being modeled, a constant. In HICO L1b data sets, 
each at-sensor pixel has 88 radiance values between 400 nm to 900 nm. The typical scene size covers 
approximately 42 km by 190 km, and 500 by 2000 pixels. To ‘model’ the data we limit our sets to 
wavelengths between 450 nm to 900 nm, so in our data sets λ1 = 450 nm and λN = 900 nm.  We have 
applied it to the Columbia River and Yangtze River HICO images using it to differentiate the plume 
features.  Those results are shown in the results section below. 
 
The next step is to take the radiances (less dark pixels), compute its derivatives, and then create a map 
(typically just a nonlinear regression) from the reflectance data (r w, d r w /dλ, d r w

2
 /d2λ, ...) to our 

target product, either pixels in the scene known to contain the product of interest or the spectra of in-
situ above water radiances for the site (Tufillaro, Davis, and Ortiz 2011). In practice we often compute 
the `principal components’ of the spectral signal first, and use these to create the indicator map 
following the procedure recently described by Oritz et al. (Oritz et. al. 2011). The principal components 
are spectral decomposition of the signal which breaks the signal into its empirical modes producing the 
greatest variance. In this way we can both reduce the dimension of the map, as well as pick out the 
parts of the signal which are best correlated to changes across the scene.   
 
The use of derivative data, in addition to the original spectral radiances is helpful since it can highlight 
significant features. This observation has been used often in the past for identification of laboratory 
spectra, and it is possible to directly adapt laboratory identification methods, such as derivative 
spectroscopy, to remote sensing product estimation. Derivate spectroscopy has previously been used to 
identify optimal spectral channels for the design of multi-spectral instruments (Lee et al. 2007), and to 
estimate coastal bottom types from aerial hyperspectral data (Louchard et al. 2002). Here we illustrate 
the use of methods adapted from derivative spectroscopy for product generation from HICO data. 
Derivate spectroscopy methods are useful in untangling spectral components when the underlying 
scattering or absorptive features have significantly different half widths. Consider the sketch of a 
simple at-sensor spectrum shown in Fig. 5. The broadest feature is the Rayleigh scattering which is the 

(3) 
(4) 

 (5) 
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monotonically decreasing across the spectrum from blue to red. Taking the first derivative de-
emphasizes this broad scattering signature by essentially subtracting a baseline from initial spectrum. 
  

 
 

Figure 5. Sketch of a typical HICO spectrum showing how derivative spectroscopy can amplify 
narrow-band features in spectrum. The 4th derivative of the spectrum in red shows how the fourth 

derivative is much more sensitive to narrow spectral features, such as chlorophyll fluorescence. 
 
Features seen include a signal in the yellow part of the spectrum with a relatively board bandwidth, and 
a signal in the red (685 nm) for chlorophyll fluorescence with a narrower bandwidth. The detection of 
these underlying absorptive and fluorescent signatures can be sharpened by the use of derivative 
spectroscopy. Specifically peaks with narrower half-widths grow more quickly with the order of the 
derivative. This is illustrated in Fig. 6 where we show that the derivative helps to highlight signatures 
sensitive to sediment in recent Columbia River spectra. Spectral features identified in this way can 
create products which are `regionally tuned,’ and built on historical data specific to a coastal area. 
 

 
 

Figure 6.  Analysis of a HICO spectra using derivative spectroscopy. (a) The derivative spectra 
calculated at the points indicated in the HICO image (b) taken 23 July 2011. (c) A `regionally 

tuned’ map of sediment concentration (bright red is high sediment, dark red low) emanating from 
the Columbia River. The derivative at 540 nm is highly sensitive to the sediment in the river plume. 
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The method for our sediment and pigment products from HICO is similar to that recently described by 
Gitelson, et al. (2011). They used HICO data to create regionally tuned chlorophyll-a product for the 
Azov Sea, where they pick the bands for the product, starting with all the HICO wavelengths, and then 
optimizing the choice of bands, for a band-ratio algorithm, based on in-situ data. Their method is also 
informed by derivative analysis in their choice of the final bands for the regression. Our method differs 
in that we build our optimization using all the HICO wavelengths, and instead of testing for the 
sensitivity to specific bands, rather, our sensitivity is based on the principal components which are a 
linear combination of all the wavelengths. Specifically, the method we describe could contain details 
about the spectral shape - such as spectral bandwidths - which might not be utilized in the method of 
Gitelson and co-workers. 
 
Additionally as HICO project scientist, I am funded by NRL to continue to work with the engineers and 
scientists at NRL and partner institutions to prepare for the processing and analysis of HICO data. The 
NRL team processes the HICO data to standard level 1b (calibrated at sensor radiances) products. At 
OSU we archive and distribute HICO data for academic users and international partners (Davis et al. 
2012). We are also processing the data on a request basis providing some L3 products with geolocation 
and atmospheric correction, as well as collaborating with a number of partners to use HICO data as part 
of their on-going programs. 
 
RESULTS  
 
The focus of this effort is on the processing and analysis of HICO data to demonstrate the utility of 
hyperspectral imaging for characterization of coastal waters.  Our efforts are particularly focused on 
river systems and we have conducted initial analysis of HICO data for the Columbia and Yangtze 
Rivers. To date we have also processed an extensive set of MERIS data for the Columbia River and 
Oregon Coastal Waters.  And we have collected in situ data for validation of products off the 
Northwest Coast and are currently comparing the MERIS and HICO products with that in situ data.  
 
An example of the where we have applied the derivative analysis plume indicator approach described 
above is shown in Fig. 7 for HICO images of the Columbia River.  More recently, we began work with 
Alex Kurapov (Physical Oceanography, Oregon State University) on how to assimilated ocean color 
data of the Columbia River plume from both MERIS and HICO into Alex’s groups regional ocean 
model for forecasting off the Oregon Coast (Kurapov et. al 2011). This work should allow us to make 
short term forecasts of water clarity and turbidity in the region of the Columbia River mouth, and to 
follow the fine details (temporally and spatially) of the wanderings of the river plume.  
 



10 

 
 
Figure 7.  Images of Columbia River with indicator map highlighting sediments: (a) L1B HICOTM 
image of Columbia River mouth 19 March 2010. (b) An indicator for sediments in the Columbia 

River based on the dark pixel spectral separation for the image presented in Fig. 3(a). (c-f) Typical 
spectra and sediment indicator maps for three HICO images from July 2010. 

 
 
Similarly we have applied this technique to HICO images of the Yangtze River in China. Fig. 8 shows 
a sequence of clear images from HICO along with typical plots of the second derivative of the 
spectrum with respect to wavelength.  The wavelengths around 620 are sensitive to sediment 
concentrations (and 580 is a chlorophyll absorption minimum), and MERIS uses a 620 nm channel to 
estimate sediment. As also pointed out by Gitelson et. al. (2011), HICO allows us to tune the product 
algorithm wavelengths to the products for a particular region. In the Yangtze region, which can exhibit 
extremely high sediment concentrations, the sediment maximum occurs closer to 610 nm rather than 
620nm, and our principal component method, like optimized band ratio methods (Gitelson et. al., 
2011), will weigh the sediment product algorithm more closely to the sediment maximum when trained 
on regional data (Fig. 9). 
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Figure 8.  HICO images and derivative spectra of the Yangtze river in China. Using collections of 
images we are building up signatures to distinquish the constituents of the water column  

for this region. 
 
 

 
 

Figure 9. Upper left,  HICO RGB image and, upper right, sediment product map for Yangtze River, 
China on 6 July 2010. Lower, the second derivative of the spectrum indicates that wavelenths 

around 605 nm are much more sensitive to sediment concentration than the 620 nm MERIS band 6.  
Our HICO product algorithm will automatically optimize the product algorithm to weight data more 

heavily to around 605 nm when trained on Yangtze regional historical data,  
like that presented in Fig. 8. 
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As mentioned, HICO has approximately 100 meters spatial resolution and 5.7 nm spectral resolution. 
GOCI is 500 m multispectral but has hourly coverage. To create ‘merged’ GOCI-HICO data that 
approach GOCI’s temporal resolution and HICO’s spatial resolution, we are attempting to create a 
super-resolution spatial filter for GOCI based on HICO data around the Han River. The algorithm was 
recently created by (Charles et al, 2011) and is based on sparse signal processing.  
 
The sparse filter model for the hyperspectral data computes an observed spectrum at each pixel, 
 

 
 
where   is a matrix of basis functions (called ‘dictionary elements’) and is the 
coefficient vector for the pixel .  is the noise term. The model is a linear mixing model, but it 
is not the more common principal components model in which the coefficients sum to one. The 
optimization procedure to estimate the coefficients is a nonlinear process that explicitly assumes a 
`sparsity’ assumption --- that each pixel contains only a few distinct materials. The coefficient’s are 
estimated for each pixel by a  regularized least-squares optimization termed Basis Pursuit De-
Noising (Chen et. al., 2001). 
 
The trick, of course, is the find a dictionary which corresponds to the materials in the waters of a 
specified region. To do this we use hyperspectral data from HICO for pixel collections from distinct 
water masses (see Fig. 10) and attempt to find a sparse coding model from the GOCI data by 
performing an inverse solution of the Basis Pursuit. In other words, we solve an optimization problem 
that seeks hyperspectral coefficients that are consistent with the sparsity assumption and with data from 
GOCI and HICO. Initial results are shown in Fig. 10. The dictionary leaning appears to create basis 
functions that resemble open water, sediment rich, and near-shore spectra. However, to date, we do not 
think the algorithm has uniquely identified spectra for specific materials in the water column. We are 
currently adapting the algorithm to do a weighted optimization to attempt to force it into more 
physically unique spectra. 
 
HICO has been operating on the ISS for three years. Over 6000 images have been collected for 
locations around the world.  HICO is operating as planned and the data products look very good.  We 
continue to work with the NRL team on the on-orbit calibration and validation of HICO data.  As 
Project Scientist it is my goal to work with the scientific community to make the best possible use of 
this unique data set.  To that end we operate the HICO website at OSU 
(http://hico.coas.oregonstate.edu ) which serves data to interested scientists around the world.  We 
currently have over 50 users; 23 of them have submitted formal proposals and their projects are 
summarized on the HICO website (Davis et al, 2012). The website also includes publications and 
presentations on HICO, an archive of existing data and a tool for selecting sites and requesting data as 
well as directions for working with the data and products.  A first HICO international team meeting 
was held at the Ocean Optics Conference in Glasgow, Scotland, October 10, 2012 and the 
presentations and results will be posted on the HICO website later in October. 
 

http://hico.coas.oregonstate.edu/
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Figure 10. Coincident HICO and GOCI data around the Han River, Korea. (a) HICO image, (b) 

GOCI image, (c)-(d) respective atmospherically corrected spectra, (e)-(g) learned dictionary 
elements, black: open water; green: sediment rich; blue: near shore (Joint work with Adam Charles, 

Georgia Tech, 2012). 
 
 
I have continued to support the Naval Research Laboratory in improving the calibration and on-orbit 
performance of HICO.  This work lead to two publications one lead by Bo-Cai Gao at NRL on the on-
orbit calibration of HICO (Gao, et al, 2012; and see fig. 3 above), and one in collaboration with 
Chuanmin Hu (U. south Florida) and others on the SNR requirements and performance of instruments 
on orbit.  The procedure developed in Hu et al (2012) makes it possible to assess the performance of 
any sensor on orbit, and in particular HICO was compared to Hyperion a NASA experimental sensor 
designed for land imaging (fig. 11).  This analysis confirmed that HICO achieved the planned SNR on 
orbit and our earlier analysis of HICO’s on-orbit performance.    
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Figure 11. SNR values were determined from hyperspectral instruments of HICO (black symbols) 
and Hyperion (brown symbols), respectively. While the input radiance used to determine HICO SNR 
is similar to Ltypical for MODIS (green line), the input radiance used to determine Hyperion SNR is 
higher than MODIS Ltypical in the green, red, NIR, and most shortwave IR wavelengths. [The plot 
covers the spectral region from 300 to 1800 nm.  The left-hand scale is a log scale of SNR ranging 
from 1 to 1000.  The HICO SNR ranges from 400 at 450 nm to 200 at 850 nm.  The Hyperion SNR 

is approximately ¼ of the HICO SNR.] 
 
 
IMPACT/APPLICATIONS  
 
The long term goal of this work is demonstrate the value of a hyperspectral imager capable of making 
the appropriate measurements from space to demonstrate the capability of this technology for the rapid 
and covert characterization of the coastal ocean to support naval operations around the world.  We are 
using data from HICO on the ISS to demonstrate that capability. The work completed this year is 
another incremental step towards that goal.   
 
RELATED PROJECTS  
 
We continue to collaborate regularly with colleagues at the NRL Remote Sensing Division (Code 
7200; Jeff Bowles and others) and the NRL Oceanography Division (Code 7300; Rick Gould and 
others), Bob Arnone (U. Southern Miss.)  and Zhong-Ping Lee (U. Mass. Boston).   
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