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LONG-TERM GOALS 
 
The objective of SWAMSI is the development and demonstration of robust multi-static detection and 
classification of proud- and buried seabed objects using cooperative networks of autonomous vehicles 
with acoustic sources and receiving arrays. 
 
OBJECTIVES 
 
The emphasis of the MIT SWAMSI effort has focused on utilizing high fidelity acoustic modeling of 
both scatterers and shallow-water environments to better understand and bound the limits of 
detectability for mine-like objects via autonomous networks of sensors, and the assess the performance 
of time-reversal processing for concurrent detection, classification, localization and Tracking (DCLT) 
of seabed objects.  The analysis s supported by series of experiments using multiple sonar-equipped 
AUVs in shallow water and then cross-validate the results obtained with high precision modeling and 
visualization. Another, related objective is to better understand the problems of cooperative 
autonomous vehicle interaction to define the base-line infrastructure requirements for cooperative 
detection, classification and navigation, an understanding which may lead to guidelines for optimal 
collaborative configuration control of the underwater sonar platforms. 
 
APPROACH 
 
This program couples high accuracy acoustic modeling and visualization with customized AUV 
technology. The sonar sensing uses the bi-static and multi-static Synthetic Aperture created by the 
network, in combination with medium frequency (4-24 kHz) wide-beam insonification to provide 
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coverage, bottom penetration and location resolution for concurrent detection, localization and 
classification of proud and buried targets in SW and VSW.  The signal processing effort in SWAMSI 
is therefore centered around generalizing SAS processing to bi-static and multi-static configurations, 
including bi-static generalizations of auto-focusing and track-before-detect (TBD) algorithms. Another 
issue concerns the stability and coherence of surface and seabed multiples and their potential use in 
advanced medium-frequency sonar concepts. 
 
MIT's acoustic modeling capabilities derive from the OASES environmental acoustic modeling 
framework, which is a widely distributed suite of models covering a variety of ocean waveguide and 
source/receiver representations. Recent developments are computational modules for full wave theory 
modeling of mono-static and bi-static target scattering and reverberation in shallow water waveguides. 
The most recently developed module, OASES-3D provides wave-theory modeling of the full 3-D 
acoustic environment associated with mono-static and bi-static configurations in SW and VSW with 
aspect-dependent targets and reverberation features. It incorporates environmental acoustic features 
specifically associated with bi-static sonar concepts in shallow water, including aspect-dependent 
target models, seabed porosity, and scattering from anisotropic seabed roughness such as sand ripples.  
 
With every major AUV deployment, the Mission Oriented Operating Suite (MOOS) previously created 
at MIT by research engineer Paul Newman advances in robustness and flexibility, and has been 
undergoing major upgrades in regard to the behavior-based control using the new IvP-Helm developed 
by Mike Benjamin, who in 2011 joined the MIT laboratory for Autonomous Marine Sensing Systems 
as Research Engineer, following a 20 year career at NUWC. Another significant component is the 
development of a comprehensive simulation testbed, coupling the MOOS-IvP autonomous vehicle 
simulation environment with a high-fidelity acoustic simulator, resulting in a complete, distributed 
software base for planning, simulating and analyzing multi-vehicle MCM missions. 
 
WORK COMPLETED 
 
Supervised Machine Learning for Underwater Target Classification  
An increasingly important mission for Autonomous Underwater Vehicle (AUVs) is the identification 
and classification of potentially hazardous targets in harbors.   To this end, a process has been 
developed in simulation to allow AUVs to classify underwater targets using only scattered acoustic 
amplitude data collected at selected waypoints.  Target and bottom roughness scattered fields were 
simulated using OASES and SCATT, then combined and sampled into independent training and 
testing examples for a Support Vector Machine (SVM).  The feature space and parameters for the 
SVM are selected using a design of experiments grid search.  By processing the SVM model using a 
feature reduction algorithm, regions critical to classification within the scattered field are identified.  
To make use of the resulting models and critical features, a vehicle in the field would be loaded with 
per-generated models for bottom and target classification.  When a target is localized, the vehicle 
would begin visiting the critical waypoints until a confident classification is achieved using the SVM 
models.  The resulting in-flight classification, based only on amplitude data collected by a hydrophone 
along the vehicle's path, could be used as the basis for further action of the target.  The same process 
used for classification was extended for regression of bottom anisotropy, allowing SVMs to be applied 
to continuous parts of the target characterization problem. This process could be broadly applied to a 
wide variety of target classification and regression problems, including shape, composition, size and 
orientation of targets. 
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Figure 1.Final AUV behavior for bistatic classification with a fixed source: 1) Spherical and 
Cylindrical targets on the ocean bottom, with a fixed source between them. 2) An AUV enters the 

field, and find the first target acoustically.3) The AUV hypothesizes that the target is a cylinder, and 
charts an optimal path (using a* search and the known key waypoints from training) through the 

scattering field for a cylinder. 4) After completing the first few waypoints, the SVM classifications of 
the field are looking more like a sphere than a cylinder.  The AUV changes its hypothesis to sphere. 

5) After completing the majority of the sphere waypoints, the AUV has a sufficiently confident 
classification and returns its decision. 

 
Acoustic Active Sonar Simulator Augmentation 
The current acoustic active sonar simulator (capable of dealing with a deep ocean environment) has 
been further augmented to include a more accurate surface reverberation model developed by the 
Naval Research Laboratory. It has also been augmented to include the capability for various window 
functions to be added to both the source pulse as well as the overall sonar-beam. The simulator as also 
been expanded to take commands such as waveform type, elevation angle, and beam width from 
another module. The simulator can now handle calculating Doppler effects from a moving target as 
well as correct move-out over horizontal arrays, vertical arrays or a combination thereof). Along with 
all these improvements the entire simulator has been restructured and rewritten from the original 
MATLAB script to a faster C++ version. The C++ version is also more compatible with the MOOS 
(Mission Oriented Operating Suite) environment run on LAMSS' AUVS. 
 
Underwater networking for AUVs 
In 2012, we continued development of the second version of the Goby marine networking library and 
toolbox (Goby2).  Goby2 is near final release stage and is mainly awaiting the completion of 
documentation. We have written new drivers allowing use of Iridium satellite communications, 
allowing a multi-hop network including both subsea (acoustic) and above water (satellite) links. Such 
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communications were successfully demonstrated at the Tiger12 sea trial involving a link from the 
research vessel to a deep sea mooring via two intermediate hops (one on shore, one on a waveglider). 
Figure 2shows a schematic of this setup. 
 

 
 

Figure 2.Structure diagram of the Goby components for the Tiger12 cruise to form a seamless link 
from the Research vessel to the Tiger mooring (and intermediate nodes) over a collection of 

different link types (satellite-TCP, satellite-Iridium, acoustic modem.[1] 
 
Furthermore, we developed a scheme for very highly compressed telemetry of AUV position based on 
differential entropy encoding of projected future positions. The prior sent positions of the AUV are 
used to extrapolate the future position. The difference from this extrapolated position and the actual 
future position is sent which is used by the receiver to decode the new position. This difference (or 
error) can be well modeled by a center-weighted probability distribution and is thus suitable for near-
optimal encoding using an arithmetic source encoder. Such an encoder was written for Goby2, and the 
results of running it on the GLINT10 AUV Unicorn dataset is given in Fig. 3. This figure is a 
histogram which shows the number of messages from the dataset with a given encoded size (in bits, 
where smaller is better) for each of three different models plus an uncompressed baseline (int32). As 
this figure shows, this technique provides compression of up to 90% (in the adaptive model case) more 
than the uncompressed message (int32). Furthermore, the adaptive model provides 86% more 
compression than the widely used Compact Control Language, a marshalling scheme that is widely 
used in the field and that this work aims to replace. 
 

 
 

Figure 3.Histogram of all messages’ size in bits to send AUV’s x,y,z position to a resolution of 1 
meter every 10 seconds from the GLINT10 dataset. Note that the adaptive model (generated from 

prior statistics) performs the best after a certain learning period. The “int32” is an  
uncompressed comparison. [2] 
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RESULTS 
 
Supervised Machine Learning for Underwater Target Classification  
 

 
 

Figure 4. Plot of margins verses frequency for spherical verses cylindrical targets, indicating  
true and false classifications. 

 
The basic elements of this SVM target classification approach have been demonstrated using simulated 
data from SCATT and OASES acoustic packages.  Scattered fields were generated for fluid filled 
spherical and cylindrical targets of varying dimensions in the presence of isotropic or anisotropic rough 
bottom interference.  SVM training examples were then generated by inputting scattered amplitudes 
along AUV “paths” consisting of sets of randomly generated waypoints.   Independent test examples 
were used to test the model robustness.  The results for a SVM test classification of target shape for a 
sphere verses cylinder case, with isotropic rough bottom scattering, can be seen in figure 4, which 
shows margin verses frequency for a data set including 25-waypoint long AUV paths.    After SVM 
classification is run on all of the random test examples, the model is assessed based on the true positive 
to false positive and true negative to false negative margin ratios. A large ratio implies that a high 
margin implies correct classification for both spherical and cylindrical targets.   
 
For example, the model testing shown in figure 4 indicates that the strongest negative classifications 
(cylinders classified as cylinders) can be clearly distinguished from the worst false positives (spheres 
classified as cylinders) just based on margin.  There are no paths that classified cylinders as spheres in 
this test set.  The highest margin paths were algorithmically reduced to isolate key features within the 
region between the source and target.  The paths that result from this algorithmic path reduction are 
therefore able to classify the targets with high confidence using only 20-30 waypoints.  
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Figure 5. Plot of the best path of 25 waypoints for the classification of spherical verses cylindrical 
targets at all frequencies. 

 

 
 

Figure 6. Plot of margin verses number of waypoints visited by a vehicle following the path shown 
in figure 6 through the scattered fields around spherical and cylindrical targets. 
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The best 25 waypoint path from this test set is then selected, and a path planning algorithm, such as an 
a* search, is applied to the waypoint set to choose a vehicle's path for best classification.  The best path 
for source range = 200m, source depth=50m, and frequency=7-9kHz is shown in figure 5.  Figure 6 
shows the classified margin verses number of waypoints achieved along this best path by a simulated 
AUV as it passes through simulated spherical and cylindrical scattered fields.  A positive margin 
indicates a spherical classification and a negative margin indicates negative classification. Both 
spheres and cylinders are correctly classified by the model with high confidence as an AUV completes 
the path through the fields.   
 
IMPACT/APPLICATIONS 
 
The long-term impact of this effort is the development of new sonar concepts for VSW MCM, which 
take optimum advantage of mobility, autonomy and adaptivity. For example, bi-static and multi-static, 
medium-frequency sonar configurations are being explored for completely or partially proud or buried 
mines in shallow water, with the traditional high-resolution acoustic imaging being replaced by a 3-D 
acoustic field characterization as a combined detection and classification paradigm, exploring spatial 
and temporal characteristics which uniquely define the target and its environment. 
 
TRANSITIONS 
 
The virtual source modeling approach developed under this project has been transitioned to NURC 
(now CMRE) as part of the OASE3D target modeling framework. Here it has been coupled to the 
COMSOL finite element framework to allow modeling of complex elastic targets. It has also been 
transitioned to NUWC (J. Blottman), CSS (D. Burnett), and WSU (Marston) for the same purpose.  
 
There are several other ONR and NSF sponsored distributed sensing programs applying the MOOS-
IvP payload autonomy architecture develolpoed by MIT-LAMSS under GOATS and SWAMSI, 
including PLUSNet and UCCI. Most recently the autonomy system has been adopted by the DARPA 
Deep Sea Operations Program (DSOP). The active sonar simulation environment developed under 
SWAMSI has also been transitioned to the DSOP program, where it has been modified to a deep ocean 
active sonar environment. Outside the US, MOOS-IvP is being adopted by DSTO in Australia, and 
continues to be used and further developed by the Nato Undersea Research Centre, now CMRE. 
 
The Goby software infrastructure  for underwater networking for AUVs, developed under SWAMSI 
and GOATS, has continued to see significant growth in 2012, including outside the MOOS-IvP 
community, quickly becoming a de-facto standard for underwater networking on fielded vehicles. 
Bluefin Robotics is adopting the Goby2 Dynamic Compact Control Language (DCCL) as their subsea 
messaging scheme, the Ocean Observatories Initiative is adopting Goby2 for AUV communications, 
and research groups from institutions including the University of New Brunswick, MIT, the University 
of Washington, and the Georgia Tech Research Institute have been adopting Goby for their AUV 
projects. 
 
RELATED PROJECTS 
 
The research effort under this Grant is a seamless continuation of the effort carried out under Grant 
N00014-04-1-0014. Sharing the underwater vehicles and autonomy system, this effort is closely 
related to the GOATS project, initiated as the GOATS’2000 Joint Research Project (JRP) with the 
NATO Undersea Research Centre (NURC). The GOATS effort has been continued at MIT under the 
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GOATS’2005 grant (N00014-05-1-0255), funded jointly by ONR codes 321OA, 321OE, and 321TS. 
The effort is currently continued under the ONR program GOATS 2008 - Autonomous, Adaptive 
Multistatic Acoustic Sensing  (N00014-11-1-0097) including funding for the collaboration with 
NURC, which continues under a Joint Research Projects (JRP) on multistatic acoustic sensing and 
surveillance, and undersea distributed sensing networks.  
 
The continued development and maintenance of the MOOS-IvP autonomy software being funded by 
ONR Code 31 (D. Wagner and B. Kamger-Parsi, Program Managers), as well as Non-Government 
Institutions  such as Battelle Memorial Institute. 
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