
1

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Application of Advanced Multi-Core Processor Technologies
to Oceanographic Research

Mark R. Abbott

104 CEOAS Administration Building
College of Earth, Ocean, and Atmospheric Sciences

Oregon State University
Corvallis, OR 97331-5503

phone: (541) 737-5195 fax: (541) 737-2064 email: mark@coas.oregonstate.edu

Grant Number N000141110104
http://www.ceoas.oregonstate.edu

LONG-TERM GOALS

Improve our ability to sense and predict ocean processes, utilizing state-of-the-art information
processing architectures.

OBJECTIVES

Next-generation processor architectures (multi-core, multi-threaded) hold the promise of delivering
enormous amounts of compute power in a small form factor and with low power requirements.
However, new programming models are required to realize this potential. Our objectives are to deploy
signal processing algorithms onto a variety of “systems on a chip” (SOC) such as those being
developed by Intel and NVidia, as well as the application of SOC architectures for other vehicle
functions.

APPROACH

The overarching theme of this work relates to the application of advanced heterogeneous processors
(both in an embedded environment and in a cluster) to high bandwidth signal processing. Our previous
work included the development of a task dispatcher model for rapid development of signal processing
applications on the IBM Cell/B.E. platform. This year, we completed several enhancements to this
system; including the addition of scheduling tasks on a cluster, heterogeneous (GPU/CPU)
computation, and a graphical programming language.

WORK COMPLETED

Our previous research explored how advancements in processor and system architecture influence
software design and how they can be leveraged to accelerate signal processing tasks, specifically, the
Conventional Beam Former (CBF). The IBM Cell processor was the initial development platform for
this research, and we successfully ported the Oasis implementation of the CBF onto it. In addition to
implementing the CBF on the Cell, we developed a client-server approach for executing beam forming

mailto:mark@coas.oregonstate.edu
http://www.coas.oregonstate.edu/

tasks. This research expanded into a general model for agile, high-bandwidth, computation inspired by
lessons learned.

Porting applications between platforms, languages, and paradigms are each complex tasks. Over the
course of our previous work, we ported the beam former across each of these. The most challenging
was the difference in programming paradigm between Matlab’s managed mathematical constructs and
the basic C/C++ constructs required for the Cell/B.E. In a sense, they could not be further apart. Using
Matlab, the developer does not need to consider memory management at all. In C, memory
management is a constant concern. The Cell/B.E. takes memory management to a new level of
complexity, as every transfer to or from the Synergistic Processing Elements (SPE) requires an explicit
DMA (Direct Memory Access) operation. It became clear that we would need to develop a suite of
tools to abstract the complexities of the underlying hardware to make efficient forward progress.

Our toolkit solves the most difficult problem we encountered while programming heterogeneous
multiprocessor systems, which is related to scheduling compute tasks onto the disparate cores in the
most efficient way possible. A common approach to multi-threaded programming is to divide an
algorithm into a few well-understood parallel constructs. Examples of these include the pipeline, and
the parallel for loop. These examples of parallel division of work are useful because they are distinct
and complementary strategies. The pipeline executes different tasks on each thread, and the parallel
for executes the same task on each thread, but with different data.  In a pipeline, each work unit
passes from thread to thread as it moves through the algorithm. In contrast, a parallel for executes a
distinct invocation of the entire algorithm independently, and in parallel. In each case, the work units
must be independent. Every model for dividing work up for parallel processing requires compromise.
The pipeline approach can yield the best latency, but if its stages are unbalanced, throughput and
efficiency will suffer. The parallel for is the most efficient, but latency is no better than a serial
solution. It is the job of the programmer or architect to analyze the application and make the best
decision. This task requires insight and experience, and can still yield less-than ideal results.

We thought that it should be possible to allow the system to make some of these decisions
dynamically. Our solution was to develop a system for describing an algorithm in terms of its stages
and their dependencies. The core of the system is a scheduling algorithm that executes work units as
their dependencies are completed. This is a hybrid between the pipeline and parallel for approach. If
each stage in the pipeline is given a higher scheduling priority, a latency value approaching the
pipeline can be achieved. However, if the pipeline is unbalanced, efficiency can remain high by
scheduling other work units to fill gaps in execution. The scheduling system is automatic and dynamic,
and does not require human effort to achieve excellent results.

RESULTS

We decided that the best way forward was to begin again, and use the lessons learned from our
previous work and design a new, enhanced, scheduling system. We are calling this system Distributed
OpenCL. In the enhanced scheduling system, tasks are defined using OpenCL. Designed to provide an
abstract and uniform programming language for CPUs, GPUs, and Accelerators (FPGAs, and the
Cell/B.E., for example), OpenCL insulates its users from vendor lock-in that is common when
developing for these specialized architectures. In addition to OpenCL, the scheduling system defines a
higher level XML-based format for storing and communicating complete algorithms, made up of
several OpenCL kernels (units of code in OpenCL parlance). The implementation files produced by
this system can be evaluated on a vast array of target hardware. We have extensively tested the system

3

with a cluster of workstations with NVidia and AMD GPUs. We are actively developing the runtime
system for embedded execution.

We have demonstrated the applicability of the Distributed OpenCL for high bandwidth signal
processing by implementing the OASIS-developed conventional beam former (CBF). Figure 1 is a
screen shot of the CBF implemented using the graphical programming language we developed, which
is described in more detail below. Using a library of digital signal processing blocks, the
implementation of a CBF could be completed in a matter of minutes. Compare this to the weeks of
months that it could take using a traditional programming language. In addition, the traditionally
programmed implementation would be highly dependent on the underlying architecture; it is likely that
performance would suffer, if it works at all, if the code was moved to another architecture.

In addition to the CBF, we implemented an example software defined radio (SDR) application, which
are known for having very high computational demands. The second figure is the implementation of a
wide band FM receiver (broadcast FM radio). Its input is two channels of 2.048 million sample per
second single-precision floating point data. This data is down- converted, filtered, demodulated,
resampled across a cluster and output to speakers in real time.

Figure 1. Schematic of a conventional beam former implemented under Distributed OpenCL.

Figure 2. Implementation of a wide band FM receiver in Distributed OpenCL.

The figures provided above are screen captures of the graphical programming language we designed.
As each block is implemented with OpenCL, they can be compiled in real time for CPUs, GPUs and
Accelerators. The user designates data flow between blocks by dragging wires from their arguments,
which are shown with small yellow circles. These wires are encoded into an XML file that defines the
structure of the application. The XML file may be evaluated interactively, through the interface, or run
in a standalone batch mode. The format of the XML file is clearly defined which allows for the
development of many systems capable of executing the application.

We intended this system to be used by a signal processing and intelligence expert, not a programmer. It
provides the flexibility necessary for the dynamic environment of modern operations. For example, if
an unknown signature is discovered in the field, it is possible to refine the signal processing algorithms
to detect and then act on this new information with minimal effort. Furthermore, it should be possible
to transmit the algorithm description to an autonomous vehicle while deployed, further enhancing their
capability in-flight.

5

During the early design phases, we decided to leverage standard network protocols for data ingress,
intermediate transit, and egress. As a result of this decision, it is possible to use our system within
existing network-based workflows. Furthermore, it is possible to insert specialized network functions
within an algorithm implemented within the system.

IMPACT/APPLICATIONS

In the next year, we will extend the development of the platform to allow for asynchronous detection
and notification of relevant events. It is possible to process a data stream in real time and determine
whether a pre-defined condition has occurred, and notify users asynchronously. Leveraging the
network support, these notifications can come in the form or database updates, web page changes, text
messages, etc.

We are also considering the development of a passive/active situational awareness system that
integrates with Distributed OpenCL. When idle, the system will display generic data that could be
interesting or relevant to the people that generally occupy a space. Using the Kinect hardware from
Microsoft, we could detect when a unique user has approached the device at which point the system
will filter the information to match that individual’s interests. Furthermore, using a Microsoft Surface,
or related multi-touch device, it is possible to interact directly with the real time information feeds.

The goals of the future work are to provide the user tools to interrogate the massive amounts of data
that are available today. In conjunction with our scheduling system, we can transform vague and
overwhelming data into valuable information, and provide it in a format that respects the human
attention span.

RELATED PROJECTS

None

PUBLICATIONS

Dillon, William H., 2012, Distributed OpenCL: a platform for distributed, heterogeneous computing
for domain scientists, PhD dissertation, Oregon State University. [published]

HONORS/AWARDS/PRIZES

Mark R. Abbott, Oregon State University, Jim Gray eScience Award, Microsoft Research.

