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LONG-TERM GOALS 

The development, validation and application of robust uncertainty quantification methods to ocean 
modeling, forecasting, and parameter estimation. 

OBJECTIVES 

This project explores the use of Polynomial Chaos (PC) expansions for improving our understanding of 
uncertainties in Ocean General Circulation Models (OGCM). Given adequate initial and boundary 
conditions, most OGCMs can be used to forecast the evolution of the oceanic state consistent with 
known physical laws. Reliable ocean forecasts, however, require an objective, practical and accurate 
methodology to assess the inherent uncertainties associated with the model and data used to produce 
these forecasts. OGCMs uncertainties stem from several sources that include: physical approximation 
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of the equations of oceanic motion; discretization and modeling errors; an incomplete set of sparse (and 
often noisy) observations to constrain the initial and boundary conditions of the model; and 
uncertainties in surface momentum and buoyancy fluxes. 

Our objective is the development of an uncertainty quantification methodology that is efficient in 
representing the solution’s dependence on the stochastic data, that is robust even when the solution 
depends discontinuously on the stochastic inputs, that can handle non-linear processes, that propagates 
the full probability density functions without apriori assumption of Gaussianity, and that can be applied 
adaptively to probe regions of steep variations and/or bifurcation in a high-dimensional parametric 
space. In addition we are interested in developing utilities for decision support analysis; specifically, we 
plan to demonstrate how PC representations can be used effectively to determine the non-linear 
sensitivity of the solution to particular components of the random data, identify dominant contributors 
to solution uncertainty, as well as guide and prioritize the gathering of additional data through 
experiments or field observations. 

APPROACH 

Our approach to uncertainty quantification (UQ) relies on PC expansions (Le Maı̂tre and Knio (2010)) 
to investigate uncertainties in simulating the oceanic circulation. We have opted to use the HYbrid 
Coordinate Ocean Model (HYCOM) as our simulation engine because it has been developed as the next 
generation model for the US Navy and has been adopted by NOAAs National Center for Environmental 
Prediction. HYCOM is equipped with a suite of sequential assimilation schemes that will be used to 
investigate how UQ may be beneficial to data assimilation. Details about the model, its validation, and 
sample applications can be found in Bleck (2002); Halliwell (2004); Chassignet et al. (2003, 2006) as 
well as by visiting http://www.hycom.org. Below we present the main ideas of the PC expansion before 
we summarize our efforts since the last annual report of Sep 2011. 

PC expansions express the dependency of the solution on the uncertain parameter as a series of the form: 
u(xxx, t,ξξξ ) = ∑P

k=0 ûk(xxx, t)Ψk(ξξξ ), where u(xxx, t,ξξξ ) is a model solution that depends on space xxx, time t and 
the uncertain parameters ξξξ ; Ψk(ξξξ ) is a suitably chosen orthogonal basis; and ûk(xxx, t) are the expansion 
coefficients. Here, u can represent a variable expressed directly in the model such as sea surface 
temperature or velocity at a specified point, or a derived quantity such as the mean surface cooling 
under a hurricane track. In the jargon of UQ u is referred to as a Quantity of Interest or an observable. 

The choice of basis function is dictated primarily by the probability density function of the uncertain 
input data, p(ξξξ ), which enters all aspects of the UQ computations. These can be done much more 
efficiently if the basis vectors are orthonormal with respect to p(ξξξ ). Hence the basis functions are 
Legendre, Hermite, or Laguerre polynomials when the input uncertainty is described by uniform, 
Gaussian, or Gamma distributions, respectively. 

The computation of the stochastic modes is best achieved by the so-called Non-Intrusive Spectral 
Projection (NISP) method since we would like to avoid modifying the original OGCM code. Taking 
advantage of the orthonormality of the basis, NISP works by projecting the solution u on the basis 
function Ψk via inner products, and by replacing the integrals with quadrature formula. The coefficients 
can then be computed simply by running the model at specified values of the uncertain parameters, 
storing the desired observable, and post-processing via a simple matrix-vector multiplication. No 
modification to the OGCM need be performed. 
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The investigative team at Duke University consisted of Dr. Omar M. Knio, and his post-doctoral 
associates, Drs. Alen Alexanderian and Ihab Sraj, and graduate student, Justin Winokur; they have 
concentrated on advancing the technical and theoretical aspects of the Uncertainty Quantification 
efforts. Drs. Mohamed Iskandarani (lead PI), Ashwanth Srinivasan and William C. Thacker (University 
of Miami) have focused on formulating the oceanographic uncertainty problems, the modification to the 
HYCOM code and its actual execution, and the preparation of the necessary data to carry out the 
research agenda. Dr. Matthieu Le Henaff assisted us with the Gulf of Mexico configuration, and we 
have held discussions with Dr. François Counillon as to the applicability of PCs in Ensemble Kalman 
Filters based data assimilation. In FY12, we collaborated with Dr. Shuyi Chen on the inverse modelling 
problem discussed below; her research group produced the high-resolution space time atmospheric 
fields needed to force HYCOM during typhoon Fanapi. In FY12, we also collaborated with Dr. Youssef 
Marzouk’s team at MIT on the development and implementation of sparse, adaptive, pseudo-spectral 
quadratures. 

WORK COMPLETED 

The main thrust of our work consisted of two primary lines of investigations: a science application 
focused on identifying key uncertain drag parameters using ITOP observations, and a major technical 
improvement to Polynomial Chaos methods revolving around adaptive sampling. 

The science application consisted of an inverse modeling problem that capitalized on the observational 
data obtained during typhoon Fanapi, and which coincided with the extensive field campaign “Impact of 
Typhoon on Ocean over the Pacific” (ITOP), to constrain key unknown wind drag parameters. It is well 
known that the wind drag coefficient does not keep increasing monotonically with wind speed, and that 
it saturates (figure 1); the saturation value Cmax, however, and the wind speed at which it occurs, Vmax,D 
are not well-known and are difficult to measure in the field. Moreover, some observations suggest that, 
for wind speeds greater than Vmax, the drag coefficient decreases linearly with slope m. Our goal was to 
use the ITOP data in order to constrain the aforementioned unknown values. The inverse problem was 
cast in a Bayesian Inference framework, so that the outcomes of the analysis are not only optimal values 
for the unknown parameters, but posterior probability density functions that measure our confidence in 
the inferred values. The Bayesian Inference requires the use of Monte Carlo sampling methods and 
these are prohibitively expensive since they require tens of thousands of HYCOM runs. Our solution 
was to build a PC-based surrogate (Marzouk et al. (2007)), using an ensemble with 67 members only, 
for the HYCOM temperature and use it in lieu of the model; the surrogate is the key step that makes 
these computations practical and feasible. A number of error metrics were monitored, figure 2, in order 
to ensure that the surrogate is indeed a faithful representation of HYCOM. The atmospheric forcing 
fields were obtained from a hindcast, triply-nested WRF simulation to replicate the atmospheric 
conditions during Fanapi at high space-time resolution; partnering with Dr. Shuyi Chen’s group was 
instrumental for this phase (and which turned out to be more time-consumming than anticipated). The 
HYCOM realizations were initialized from a data-assimilated 1/12◦ global HYCOM simulation in 
order to position oceanic features and thermal fronts correctly. The Bayesian Inference analysis 
revealed a Cmax of about 2.3 × 10−3, that occurs upward of Vmax = 34 m/s, and that the ITOP data was D 
inconclusive with regard to the slope m beyond saturation (figures 3 and 4). This work has been 
summarized in a manuscript that is currently under review (Sraj et al. (2012)). 

The technical development concerned experimentation with various adaptive sparse quadrature methods 

3
 



to improve the efficiency and accuracy of calculating the polynomial chaos coefficients. This 
calculation is the most CPU-intensive portion of the forward UQ problem, and directly impacts the 
accuracy of the resulting PC expansions. In our previous work (Alexanderian et al. (2012)) an ensemble 
of 385 members were required to explore a four-dimensional parameter space where each variable was 
expanded in 5th-order PC expansion. Subsequent analysis, however, revealed that the quantity of 
interest (surface temperature) was insensitive to 3 out of the 4 parameters, that the response for 2 of the 
four parameters is almost linear, and that 7-th order polynomials would be preferable in one direction. 
This was a clear indication that some form of adaptation is required. The database of 385 members was 
hence expanded to 513 members to provide a reference solution against which adaptive schemes can be 
tested. Furthermore, a database of 256 simulations were also computed based on Latin Hypercube 
Sampling to provide a separate and random set of sampling points that is distinct from the training 
points (the 513 member set). The database consisted then of 769 independent HYCOM realizations. 
Two adaptive methods were tested: one simply truncates the PC representation anisotropically in each 
parameter direction (Gerstner and Griebel (2003)); the other relies on a pseudo-spectral construction 
that accomodates arbitrary admissible sparse quadrature grids (Constantine et al. (2012); Conrad and 
Marzouk (2012)). This second approach proved to be superior to the first one and is the one that was 
adopted for our inverse modeling work. Figure 5 compares the error metrics of the unadapted, the 
dimensional truncation, and the pseudo-spectral adaptations: the latter achieves a lower error levels (and 
maintains it in time) using a smaller number of realizations than the other approaches. The description 
and analysis of the adaptive algorithms are currently being written for publication. We should also note 
that the HYCOM database is currently being used as a reference solution by numerous groups to test 
new adaptive quadratures. 

In addition to the aforementioned work we have been applying PC expansions to study the impact of 
uncertain initial conditions on an ocean forecast in the Gulf of Mexico. Modes of variability were 
identified from a long-running HYCOM simulation, multiplied by stochastic amplitudes and then added 
as perturbations to the initial state of the ocean forecast. We have performed an ensemble run of these 
perturbations and we are in the process of analyzing the results. We have also initiated a discussion with 
our colleagues on the application of PC methods to Lagrangian drifter studies, particularly those 
associated with the Deep Water Horizon oil spill of 2010. These discussions are still in the early stages. 

The work associated with this project has been publicized at several conferences, workshops, seminars 
and invited talks, including: 
•	 P. Conrad, J. Winokur, I. Sraj, A. Alexanderian, M. Iskandarani, A. Srinivasan, Y. Marzouk, O. Knio 

(2012) Sparse Adaptive Polynomial Chaos Representations for Ocean General Circulation Models, 
presented at 9th AIMS Conference, Orlando, FL, July 1-5, 2012. (invited) 

•	 J. Winokur, P. Conrad, I. Sraj, A. Alexanderian, M. Iskandarani, A. Srinivasan, Y. Marzouk, O.M. 
Knio (2012) A Priori Testing of Adaptive Sampling and Sparse PC Representations for Ocean 
General Circulation Models, presented at 2012 SIAM International Conference on Data Mining, 
Anaheim, CA, April 26-28, 2012. (invited) 

•	 O.M. Knio (2012) Polynomial Chaos Approaches to Multiscale and Data Intensive Computations, 
presented at SIAM Conference on Uncertainty Quantification, Raleigh, NC, April 2-5, 2012. 
(plenary) 

•	 J. Winokur, A. Alexanderian, I. Sraj, M. Iskandarani, A. Srinivasan, C. Thacker, O. Knio (2011) 
Quantifying Parametric Uncertainty in Ocean General Circulation Models: A Sparse Quadrature 
Approach, presented at the DFD11 Meeting of the American Physical Society. 

•	 Polynomial Chaos Approaches to Multiscale and Data Intensive Computations, UNC, March 23, 

4
 



2012. 
•	 Uncertainty Quantification Challenges in Modeling Complex Systems, Winter Enrichment Program, 

KAUST, January 15, 2012. 
•	 Organized a minisymposium “Sensitivity Analysis, Data Assimilation and Uncertainty Quantification 

in Ocean Modeling” at the Ocean Science 2012 meeting in collaboration with Ibrahim Hoteit, and 
Bruce Cornuelle. 

•	 “Bayesian Inference of Drag Coefficient Parameters using AXBT data from Typhoon Fanapi”, 
University Miami, MPO seminar, Sep 5 2012. 

•	 “Uncertainty Analysis and Quantification of the HYCOM SST Response to Hurricane Ivan Using 
Polynomial Chaos Expansions” Ocean Sciences Meeting 2012, Utah Feb 24 2012. 

•	 “Propagating Oceanographic Uncertainties Using the Method of Polynomial Chaos Expansion” 
Ocean Sciences Meeting 2012, Utah Feb 22 2012. 

•	 “Application of Polynomial Chaos Expansions for Uncertainty Quantification in Oceanic 
Simulations”, University Miami, MPO seminar, Sep 7 2011. 

RESULTS 

The inverse modeling problem provided a very good and practical example of how PC methods can be 
used effectively in estimating hard to measure parameters. The results showed that the wind drag 
coefficient saturates at around 2.3 × 10−3 when the wind speed is about 34 m/s, and that for higher wind 
speeds the data is incloncusive whether the drag coefficient decreases or remains constant. The wind 
speed estimate is biased towards the end of the interval explored, and suggests that the maximum wind 
speed is at least the inferred value. One limitation, unfortunately, is that the ITOP data did not include 
AXBT drops at higher wind speeds. 

The inverse modeling success illustrate the great potential the present methodology may hold for other 
pressing UQ and parameter estimation problems of interest, e.g. the impact of air-sea interaction 
uncertainty on hurricane intensification. The present pilot study focused on a single component of the 
coupled ocean-atmosphere system for simplicity. Other air-sea interaction uncertain parameters, such as 
the heat exchange coefficient, are also of interest, but their influence is likely to be more dramatic on the 
atmosphere than on the ocean and thus necessitates the use of an atmospheric model. We certainly hope 
to explore the impact of these uncertainties on atmospheric simulations in the future. 

Polynomial Chaos methods can be categorized as ensemble methods, and the size of the ensemble that 
one can afford is the main hurdle to their application to large and complex models. The adaptive 
strategy has shown that our exploration of a four-dimensional space with equal weighing of all 
parameters was wasteful of CPU cycles and storage, and that an ensemble of 70 realizations would have 
been enough. The adaptation also provides a continuous monitoring of error metrics to ensure that the 
resulting PC representation is accurate. This adaptive strategy will significantly enhance our ability to 
increase the size of the problem pursued while maximizing the efficiency of our computations. 

5
 

http://www.sgmeet.com/osm2012/sessionschedule.asp?SessionID=128
http://www.sgmeet.com/osm2012/sessionschedule.asp?SessionID=128
http://www.sgmeet.com/osm2012
http://www.sgmeet.com/osm2012


0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

V (m/s)

C
D

×
1
0

3

 

 

α = 1.1 α = 1 α = 0.4

Figure 1: Observation-based estimates of drag coefficient CD compared with our 
wind-speed-dependent representation. Thin blue (French et al. (2007)), red (Donelan et al. (2004)), 

and green (Powell et al. (2003)) lines through corresponding colored points indicate the 
observation-based estimates. Our representation is a modification of that of Kara et al. (2002): the 
parameter Vmax is used to adjust the wind speed at which the drag coefficient saturates; for speeds 

less than Vmax the parameter α is used to adjust the size of the drag coefficient while preserving the 
shape of the wind-speed dependence; and for speeds greater than Vmax the parameter m (slope of 

drag coefficient after saturation) allows for the possibility of decreasing drag with increasing wind. 
The blue and black curves illustrate the eight cases determined by putting the parameters at the 

extremes of their allowed ranges are shown in blue (α = 0.4) and black (α = 1.1) with Vmax either 20 
or 35 m/s and m either -3.8×10−5 or 0. The unperturbed HYCOM parameterization of CD (Kara 

et al., 2002) is shown in magenta (α = 1, Vmax = 32.5 m/s and m = 0). 
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Figure 2: Relative normalized error between realizations and the corresponding PC surrogates at
 
different depths: surface (left); 50 m (center); and 200 m (right). Top row: 00:00 UTC Sep 15;
 

bottom row: 00:00 UTC Sep 18.
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Figure 3: Posterior distributions for the drag parameters (top) and the variance between simulations
 
and observations (bottom). The posterior pdf of Vmax (left), exhibits a well-defined peak at around
 
34 m/s, the posterior of m is similar to the prior and indicate no information gain from the data
 

(upper center), and finally the multiplicative factor shows a sharp peak at 1.03.
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Figure 5: Left: LHS error of adaptive and isotropic truncations (with Smolyak pseudo-spectral and 
direct projections) for area-averaged SST at t=120hr; the dramatic reduction in the adaptive case 
occurs early (iteration 69) because the parameter needing the most attention has been identified. 

Right: Time evolution of the LHS error for the different quadrature and truncation schemes (direct 
projection, pseudo-spectral and adaptive).The adaptive truncation is based on iteration 5 at T=60hr 

and uses 69 realizations with 59 polynomials. The full 513 database curves have 402 polynomials for 
the Smolyak pseudo-spectral construction and 168 polynomials for the direct projection. 
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IMPACT/APPLICATIONS 

The present project presents an approach to characterize the entire response surface of an ocean model 
to uncertainties in its input data. This has implications for the fields of parameter estimation, and data 
assimilation, particularly for ensemble Kalman filter based approaches. The methodology developed 
here will be of use either for the efficient update of the covariance matrices and/or quantifying the errors 
incurred by small size ensembles. We are currently exploring these ideas. 

TRANSITIONS 

RELATED PROJECTS 

Dr. Ashwanth Srinivasan was partially supported by an NSF-RAPID grant (NSF OCE-1048697) for his 
work on the oil-fate model. 
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