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LONG-TERM GOALS 

The long-term goal of this project is to quantify the extent to which reduced-order models can be used 
for the description, understanding and prediction of atmospheric, oceanic and sea ice variability on time 
scales of 1–12 months and beyond. 

OBJECTIVES 

Demonstrate the ability of linear and nonlinear, stochastic-dynamic models to capture the dominant and 
most predictable portion of the climate system’s variability. Improve the understanding and prediction 
of the low-frequency modes (LFMs) of variability such as the Madden-Julian Oscillation (MJO), El 
Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO) and Pacific–North American 
(PNA) pattern. Validate LDMs based on data sets from observations, reanalyses and high-end 
simulations. 
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APPROACH 

Methodological developments. Develop and improve further the empirical model reduction (EMR) 
methodology for nonlinear stochastic inverse modeling (Kondrashov et al., 2005, 2006, 2011; Kravtsov 
et al., 2005, 2009), as well as other low-dimensional models (LDMs), in combination with the recently 
developed, past-noise forecasting (PNF) methodology for prediction (Chekroun et al., 2011). 
Michael Ghil, Mickaël D. Chekroun, Dmitri Kondrashov. 

ENSO and coupled variability on seasonal time-scales. Improve understanding and prediction of
 
ENSO, tropical Atlantic variability (TAV), and the Indo-Pacific coupled mode (IPT).
 
Mark Cane, David Chapman, Chen Chen, Naomi Henderson, Alexey Kaplan, Dong Eun Lee.
 

MJO. Our goal in this work is to understand what kind of dynamical mode the MJO is, and what its
 
essential ingredients are. This information will then inform prediction. Our conceptual model here is
 
low-order models for ENSO, such as the Cane-Zebiak model, that have been so important for prediction
 
— in their direct use as forecast models, as well as in the understanding they have generated. 
Adam Sobel, Daehyun Kim and Shuguang Wang. 

Extratropical variability and predictability. Determine the extent to which extratropical monthly and 
seasonal low-frequency variability (LFV, i.e. PNA, NAO, as well as other regional blocking patterns) 
can be skillfully predicted for 1–12 months in advance in an LDM that includes ENSO, MJO and 
stratospheric linkages. Characterizate statistically extratropical storms and extremes, and link these to 
LFV modes. Mingfang Ting, Yochanan Kushnir, Andrew W. Robertson, Lei Wang. 

Downscaling Weather and Seasonal Climate. Use LDMs to relate near-surface temperature and 
precipitation with predictable climate forcing such as SSTs. Explore the development of statistical 
tropical-cyclone (TC) forecasts based on ENSO and MJO forecasts by LDMs. Target tropical monsoon 
climates, emphasizing sub-seasonal characteristics of weather, such as rainfall and drought extremes. 
Andrew W. Robertson, Suzana J. Camargo, Yochanan Kushnir, Michael K. Tippett, John Allen. 

Sea Ice. Intraseasonal and annual prediction of Arctic sea ice, improve Antarctic sea ice forecasts and 
assess the impact of sea ice on mid-latitude predictability. Xiaojun Yuan, Dake Chen, Lei Wang. 

WORK COMPLETED 

Kick-off meeting on October 6, 2012 in Palisades, NY, for UCLA and CU researchers and ONR/DoD 
program managers Scott Harper, Reza Malek-Madani and Fariba Fahroo. 

New postdoctoral research scientists hired: John Allen, David Chapman, Chia-Ying Lee and Lei Wang 
(CU) and Honghu Liu (UCLA). 

Workshop on Severe Convection and Climate, 3/14-15/13, Palisades, NY. Article/videos. Agenda. 

Data-driven, multilayered low-order stochastic models Kondrashov et al. (2013a) introduced a general 
class of multilayered stochastic models (MSMs) that fall within the Mori-Zwanzig formalism of 
statistical physics. These models describe the role played in EMR by the non-Markovian terms that 
represent the cross-interactions between the resolved and unresolved variables. In EMR, such 
interactions appear via random difference equations forced by the resolved variables, while feeding 
back into the resolved dynamics via convolution integrals that involve the history of their fluctuations. 

2
 

http://irithree.ldeo.columbia.edu/news/wheres-my-seasonal-tornado-forecast/
http://wiki.iri.columbia.edu/index.php?n=Climate.TornadoWorkshop


Rough parameter dependence in climate models: The role of Ruelle-Pollicott resonances Based on the 
spectral theory of chaotic and dissipative dynamical systems, Chekroun et al. (2013c) have shown that 
the recurrences observed in planetary flows can play a key role in the parameter dependence of 
long-term flow statistics. We interpret this dependence in terms of Ruelle-Pollicott (RP) resonances and 
have developed a new approach based on using Markov representations to estimate these resonances. 
The relation between the eigenvalues of the resulting Markov operators and the RP resonances shows 
that a small gap in the dominant fraction of the latter corresponds to regimes where peaks in the power 
spectrum are the most energetic and correlations decay slowly. 

Parameterizing manifolds for stochastic partial differential equations Chekroun et al. (2013a,b) have 
developed a general approach for the parameterization of “small” scales in terms of the “large” ones in 
stochastic partial differential equations (SPDEs) by using parametrizing manifolds (PMs). PMs are 
stochastic manifolds that improve, in root-mean-square, the partial knowledge of the full SPDE solution 
vs. its projection onto the resolved modes. PMs are not subject to the classical spectral gap condition: 
they can be determined under weaker, non-resonance conditions on the eigenvalues associated with the 
resolved and unresolved modes. Non-Markovian stochastic reduced systems based on such a PM 
approach appear to perform outstandingly in the modeling of extreme events. 

ENSO and coupled variability on seasonal time-scales. A Vector Autoregressive (VAR) model has 
been developed to predict tropical climate using 12 months of SST data prior to forecast initialization. 
The model uses SST data for the 12 months before the initialization time, and it shows particular 
promise for the Atlantic Hurricane Main Development Region (MDR); see Fig. 1. 

Development of a low-order dynamical MJO model. We have added two new elements to the nonlinear 
version of the model: mixed layer ocean coupling, and weak relaxation on the moisture field. These 
elements represent persistent import of dry subtropical air by the Hadley circulation and the statistically 
stationary eddies (i.e., those not closely coupled to the MJO itself), and they allow perturbations to the 
model physics to change the MJO without destroying the mean state; see Fig. 2. 

Analysis of MJO observations. We have analyzed MJO observations in a way designed to constrain the 
low-order model, in particular its moist static energy (MSE) budget. The MSE budget was analyzed 
using data from the equatorial Indian Ocean during the CINDY/DYNAMO field program in late 2011. 
This period was special because the field program obtained a number of observations not routinely 
available; in particular, the sounding array it deployed allows estimation of the advection terms directly 
from observations. We complement this with satellite-based radiation observations and large-scale 
estimates of surface fluxes. Some results are shown in Fig. 3. 

Extratropical variability and predictability. The new post-doc, Lei Wang, joined us in September 
2013. He will implement an empirical prediction model for extratropical LFV to characterize 
intraseasonal predictability and its seasonal dependence. 

Downscaling Weather and Seasonal Climate. We have assessed the probabilistic skill of the North 
American Multi-model Ensemble (NMME), and have shown that regression-based correction of climate 
forecasts using least-squares estimates are unreliable. Our extreme index methodology — developed 
initially for tropical cyclogenesis and later extended to tornado activity — has been applied to hail. 

Sea Ice. We have conducted empirical orthogonal function (EOF) and multivariate EOF (mEOF) 
analysis on the Arctic sea ice concentration and associated atmospheric variables and developed a linear 
Markov model to predict the principal components. We discovered and reported a teleconnection 
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between late-fall sea ice in the Barents-Kara-Greenland Seas and early-winter sea ice in the Bering Sea.
 

RESULTS 

Data-driven multilayered low-order stochastic models. The structure of the MSM equations, albeit 
nonlinear, is such that the dynamics of the unresolved variables is orthogonal to that of the resolved 
ones. Likewise, the EMR formalism decomposes the dynamics of the unresolved variables across 
several mutually orthogonal levels. Based on these features, we developed an EMR formulation with 
energy-conserving nonlinearities and applied it to an idealized, partially observed, nonlinear and 
stochastic climate model with fully coupled slow and fast variables. The resulting energy-conserving 
EMR model efficiently captures the main features of the stochastic dynamics of the slow variables, even 
when the correlation decay times of the resolved and unresolved variables are comparable. 

Reduced Markov models with state-dependent noise, and Ruelle-Pollicott resonances. This result relies 
on appropriately representating the dynamics by Markov operators adapted to a given observable. Such 
operators correspond to Markov reduced models with state-dependent noise that reflects the statistics of 
the unobserved variables. We have shown the model statistics of an intermediate-complexity ENSO 
model become more sensitive to parameter changes as the spectral gaps of the associated Markov 
operator become smaller: small gaps correspond to regimes where peaks in the power spectrum are the 
most energetic, while correlations decay more slowly. 

ENSO and coupled variability on seasonal time-scales. Figure 1 (left) shows the correlation between 
the NOAA OISST and CFSv2 predictions of Atlantic SST in the MDR for Jan. 1982–Dec. 2010; this 
panel is reproduced from Fig. 9 of Hu et al. (2013). Figure 1 (right) shows the same statistic for 
predictions from the new VAR model (Lee et al., in prep.). The statistical model, which uses only 
global SST data over the year preceding the forecast initial date, outperforms CFSv2, one of the better 
participants in NMME. Note that VAR is generally more skillful at longer leads. In particular, for the 
months of strongest hurricane activity (Aug.-Sept.-Oct.), VAR out-predicts CFSv2 and has a useful 
level of skill for eight or more months ahead. 

Development of a low-order statistical MJO model. Kondrashov et al. (2013b) performed a PNF-based 
predictability study of the MJO and found that PNF considerably improves predictions of the MJO 
phase. Even when forecasts are initiated from weak MJO conditions, useful skill is maintained out to 30 
days. PNF also significantly improves the skill for initial states associated with an MJO phase over the 
Indian Ocean. 

Development of a low-order dynamical MJO model. The recent modifications in our model resulted in 
a new capability to simulate the MJO in a nonlinear framework, as an organic outgrowth of a tropical 
climate that contains longitudinal asymmetries. With a warm pool imposed by zonally varying ocean 
heat transport, we can now simulate persistent eastward-propagating disturbances in the presence of a 
reasonable mean state (Fig. 2). A still preliminary, but crucial scientific conclusion is that ocean 
coupling may play a role even when the SST anomalies are very small. 

Analysis of MJO observations. Observational analysis supports our LDM and provides indications for 
its improvement. Variations in radiative heating are in phase with precipitation and MSE, and are larger 
than those in surface turbulent fluxes, which lag precipitation. Radiative cooling emerges as the 
dominant process driving MJO instability. Vertical advection acts to damp the MJO, consistent with a 
positive gross moist stability, as assumed in our model. Furthermore, recent analysis supports our 
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hypothesis that the MJO is a “moisture mode” in the Indian Ocean, but transitions to a more Kelvin 
wave-like disturbance as it crosses the Maritime Continent (Sobel and Kim, 2012). 

Extratropical variability and predictability. We have carried out a preliminary study to determine the 
preferred region of summer heat wave activities in both the current climate and the future climate. In 
this study, we examined the monthly mean temperature variance in seven state-of-the-art coupled 
ocean-atmosphere models participating in CMIP5, along with data from the NCEP/NCAR reanalysis 
(Fig.4). The Eurasian continent as well as North America are regions of large variability in both models 
and observations, although the North American patterns differ between observations and models. 

Downscaling climate to weather extremes. We have continued our use of a regression-based index to 
downscale tornado activity from atmospheric variables and have found interannual simulation skill on 
regional scales (Table 1). Preliminary results applying the methodology to hail are encouraging. 

Subseasonal to seasonal monsoon predictability of daily weather statistics. Moron et al. (2012) related 
daily rainfall characteristics during the Indian summer monsoon to an interannually modulated annual 
cycle (MAC) and a 30–60-day intraseasonal oscillation (ISO). We have extended this work with the 
purpose of assessing the impact on rainfall of predictability inherent in these modes (manuscript in 
preparation). We have also explored three-way interactions between the Indian monsoon, the North 
Atlantic, and the tropical Pacific, showing that the individual records exhibit highly significant 
oscillatory modes with spectral peaks at 7–8 yr, as well as in the quasi-biennial and quasi-quadrennial 
bands (Feliks et al., 2013). 

We have further quantified the role of the MJO and ENSO in subseasonal-to-seasonal predictability, by 
analyzing hindcasts from three global ensemble prediction systems (EPS). The results support the 
concept that “windows of opportunity” for high forecast skill do exist (manuscript in preparation). A 
multiscale-modeling framework for daily rainfall was applied to the winter season in Northwest India. 
Our findings help clarify the sequence of Northern Hemisphere mid-latitude storms bringing winter 
rainfall over Northwest India, and their association with potentially predictable low-frequency modes 
on seasonal time scales and longer (Pal et al., 2013). 

Sea ice. EOF and mEOF analysis of Arctic sea ice concentration (Figs. 5 and 6) reveal spatially 
coherent patterns in the in the Baffin Bay and in the Barents, Kara and Greenland Seas, in the Atlantic 
sector of the Arctic, and in the Bering and Okhotsk Seas, in the Pacific sector. The dominant signal is 
the long-term declining trend in the Arctic basin. We developed a linear Markov model to predict the 
principal component of each mEOF mode that out-performs persistence, in particular at lead times 
longer than 2–4 months (Fig. 7). Sea ice thickness information contributes most to the hindcast skill, 
followed by SST and surface air temperature (Fig. 7). Moreover, during winter and spring, most of the 
hindcast skill comes from marginal sea ice, particularly in the Atlantic sector of the Arctic, while the 
central Arctic basin is more predictable during summer and fall (Fig. 8). Sea ice concentration in the 
Atlantic sector is much more predictable than in the Pacific sector (Figs. 7 and 8). 

A teleconnection between late fall sea ice in the Barents-Kara-Greenland Seas and early-winter sea ice 
in the Bering Sea is facilitated by an atmospheric Rossby wave generated by a fall sea ice anomaly in 
the former. It is this anomaly that creates anomalous cold advection near the Bering Sea in early winter. 
This teleconnection was robust in the 1980s and 1990s, but it broke down after 1998, when sea ice 
reduction in the Barents-Kara-Greenland Seas started to accelerate (Yang and Yuan, 2013). 
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IMPACT/APPLICATIONS 

RELATED PROJECTS 

Methodological developments. The work on the EMR and MSM methodology carried out under 
ONR-MURI funding is complemented by work performed with NSF-DMS–led support in the 
framework of an NSF-DOE-DOA program on Earth System Modeling. The latter work, under the same 
Lead PI, concentrates on climate sensitivity; it involves two other universities besides UCLA, namely 
Indiana University and the University of Nevada, Reno, as well as additional Co-PIs at UCLA. The 
present work concentrates on prediction and the two projects benefit strongly from each other, including 
the joint support of a post-doc (Honghu Liu). 

MJO. The work described herein is complementary with two of our other projects. One project, 
funded by the NASA Modeling and Analysis Program, involves simulation of the MJO in the NASA 
GISS climate model. Another, funded by the NSF Large-Scale Dynamics program, involves 
cloud-resolving simulation of the MJO. The present project is distinct from those two in its explicit 
focus on development of a low-order model, as opposed to simulation with comprehensive 
“full-physics” models (GCM for NASA, CRM for NSF). 

Extratropical variability and predictability. We also examined intensity and position changes of 
subtropical highs during northern summer in 20th-century observations and in 21st-century model 
simulations (Li et al., 2012). We found that the enhancement of subtropical highs, which can contribute 
to the increase in LFV of surface temperatures, is likely to be caused by enhanced land-ocean heat 
contrasts in the future. In another related study, we examined near-term changes in Southwestern 
United States hydroclimate and the mechanisms that may lead to these changes (Seager et al., 2013). 

Downscaling Weather and Seasonal Climate. Our work on tornado and severe weather downscaling is 
also supported by a Research Initiative in Science and Engineering Award from Columbia University, 
on “Towards Long-Range Prediction of Tornado Activity.” 
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Figure 1: Averaged correlation in the Atlantic hurricane Main Development Region (10-20N,
 
20-85W), stratified by leads and target months. Black contour marks the 0.5 correlation level.
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Figure 2: A typical nonlinear model solution. Zonal wind is plotted as a function of longitudinal 
distance, on the x axis, and time, on the y axis. Warm colors are positive, cool colors negative. 

Imposed ocean heat transport is positive in the center of the domain, negative on the edges, creating 
a warm pool. Eastward propagating westerly wind bursts are apparent. 

12
 



Figure 3: Top: time series of column-integrated radiative cooling, surface turbulent fluxes, and their 
sum, for the DYNAMO period. TRMM satellite precipitation is shown in the grey dashed curve. 
Radiative cooling is from the CERES satellite, surface fluxes from the OAflux data set. Second 

panel: time series of column-integrated horizontal advection of moist static energy, vertical advection 
of moist static energy, and their sum, for the DYNAMO period. TRMM satellite precipitation is 

shown in the grey dashed curve. Advection terms are computed from the DYNAMO sounding array. 
Third panel: comparison of sum of radiative and turbulent sources with total advection. Bottom 

panel: comparison of column-integrated MSE tendency computed directly, vs. that from the sum of 
all other terms in the budget. 

13
 



0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚ 150˚W 120˚W 90˚W 60˚W 30˚W
longitude

30
˚S

90
˚N

la
tit
ud
e

June,&July,&August&monthly&mean&temperature&variability&(in&standard&devia8on)&&in&Observa8ons&and&
CMIP5&Models,&1950&C&2000&

0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚ 150˚W 120˚W 90˚W 60˚W 30˚W
longitude

30
˚S

90
˚N

la
tit
ud
e

0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚ 150˚W 120˚W 90˚W 60˚W 30˚W
Longitude

30
˚S

90
˚N

La
tit
ud
e

0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚ 150˚W 120˚W 90˚W 60˚W 30˚W
longitude

30
˚S

90
˚N

la
tit
ud
e

0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚ 150˚W 120˚W 90˚W 60˚W 30˚W
longitude

30
˚S

90
˚N

la
tit
ud
e

0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚ 150˚W 120˚W 90˚W 60˚W 30˚W
longitude

30
˚S

90
˚N

la
tit
ud
e

0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚ 150˚W 120˚W 90˚W 60˚W 30˚W
longitude

30
˚S

90
˚N

la
tit
ud
e

0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚ 150˚W 120˚W 90˚W 60˚W 30˚W
longitude

30
˚S

90
˚N

la
tit
ud
e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
sqrt[Near-Surface Air Temperature]

CSIROCMk3C6C0&
(10)&

NCEP/NCAR&
Reananlysis&

HadGEM2CES&
(4)&

IPSLCCM5ACLR&
(4)&

MIROC5&(3)&

CanESM2&(5)&

CCSM4&(4)&

CNRMCCM5&(5)&

Figure 4: Summer (JJA) monthly mean temperature standard deviation based on NCEP/NCAR 
reanalysis (top left) and seven CMIP5 models with at least three ensemble members (indicated by the 
number following the name of the model in each plot) for the period 1950-2000. The data is linearly 

de-trended before the variance calculation. 
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Figure 1  Spatial patterns of the �rst three mEOF modes of  (from left to right) sea ice concentration, sea ice 
thickness, SST, surface air temperature (a), sea ice concetration, geopotential height at 200mb, zonal and 
meridional winds at 200mb (b), respectively. 

Figure 5: Spatial patterns of the first three mEOF modes of (from left to right) sea ice concentration, 
sea ice thickness, SST, surface air temperature (a), sea ice concetration, geopotential height at 

200mb, zonal and meridional winds at 200mb (b), respectively. 
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Figure 1b  Spatial patterns of the �rst three mEOF modes of (from left to right) sea ice concentration, sea ice
thickness, SST, surface air temperature (a), sea ice concetration, geopotential height at 200mb, zonal and
meridional winds at 200mb (b), respectively.

Figure 6: Spatial patterns of the first three mEOF modes of (from left to right) sea ice concentration, 
sea ice thickness, SST, surface air temperature (a), sea ice concetration, geopotential height at 

200mb, zonal and meridional winds at 200mb (b), respectively. 
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Figure 2  Hindcast skills measured by correlations between hindcast and observation in Barents Sea (a), Sea of
Okhostsk (b), Bering Sea (c) and Ba�n Bay as function of leading month. Each colored curve represents a 
hindcast experiment using di�erent variables together with SIC. The red curve is the persistence of SIC.

Figure 7: Hindcast skills measured by correlations between hindcast and observation in Barents Sea 
(a), Sea of Okhostsk (b), Bering Sea (c) and Baffin Bay as function of leading month. Each colored 
curve represents a hindcast experiment using different variables together with SIC. The red curve is 

the persistence of SIC. 
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Figure 3  Spatial distribution of hindcast skills measured by correlations between hindcasts and 
observations as functions of seasons and leading months. 

Figure 8: Spatial distribution of hindcast skills measured by correlations between hindcasts and 
observations as functions of seasons and leading months. 
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
 
South 0.66 0.51 0.52 0.69 0.50 0.47 0.57 0.31 0.12 0.46 0.60 0.71 0.53 
Southeast 0.53 0.54 0.36 0.47 0.68 0.46 0.54 0.42 0.67 0.41 0.57 0.69 0.30 
Central 0.68 0.69 0.65 0.53 0.56 0.73 0.65 0.35 0.42 0.26 0.28 0.73 0.51 
Upper Midwest - - 0.60 0.55 0.71 0.57 0.56 0.14 0.54 0.56 - - 0.45 
Plains - - 0.63 0.58 0.80 0.53 0.81 0.49 0.55 0.23 - - 0.51 
Northeast - - - 0.38 0.13 0.61 0.50 0.41 0.37 0.71 0.29 - 0.36 
Southwest - - - 0.21 0.13 0.37 0.32 0.40 0.02 0.31 - - 0.22 
Northwest - - - 0.03 0.44 0.36 - 0.07 - - - - 0.15 
West - 0.49 0.60 - - - - - - - - - 0.34 

Table 1: Correlation between the index and reported number of tornadoes by U.S. climate region and
 
month for the period 1979-2010. Significant correlations are in bold font. Regions and months with
 

less than 32 reported tornadoes during the period are omitted.
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