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LONG-TERM GOALS 
 
Uncertainties in the numerical prediction using a computational model of a physical system arise from 
two primary sources: i) errors within the model itself; and ii) imperfect knowledge of (a) the initial 
conditions to start the model and (b) boundary conditions and the forcing that is required to run the 
model. One way to examine these uncertainties is the multi-model approach, i.e., to compare results 
from multiple models. However, the multi-model approach cannot completely address either (i) or (ii) 
due to lack of knowledge of the real state. Another way is to compare the results with the 
“observations” that sample the real state. However, the observations introduce another source of 
uncertainties, i.e., iii) imperfect knowledge and/or improper assumptions within the observations 
including sampling error.  

 
The ultimate objective of this project is to develop a framework for two purposes: one is the maximum 
reduction of the reducible uncertainties and the other is the diagnosis of the irreducible uncertainties in 
the numerical prediction. We will use a data-assimilation approach, which is ideal for this problem. 
Data assimilation is a method that was developed to primarily address the issues related to (ii-a) above 
by merging the observations into the numerical prediction. It attempts to optimally combine the 
“background”(or “forecast”) information obtained by a short-term forecast using a numerical model 
with the observations taken within the forecast time window. The resulting state is the so-called 
“analysis”, whose uncertainties are expected to be smaller than both the background and the 
observations. Some of these uncertainties are reducible by improving the data assimilation method. 
Other uncertainties are irreducible. 
 
OBJECTIVES 
 
To pursue our objectives, we integrate data assimilation into the multi-model approach. The Local 
Ensemble Transform Kalman Filter  (LETKF) is our choice of the data assimilation method. Because it 
uses an ensemble to ESTIMATE the state uncertainties, it offers a perfect vehicle for the multi-model 
approach. In addition, a number of advantageous algorithms have been developed for the 
quantification and the reduction of uncertainties of all three types (i) - (iii), including both model-bias 
correction and observation-bias correction. Bias corrections, in a sense, transform part of the 
irreducible uncertainties (by other methods) into the reducible uncertainties. By integrating it into the 
multi-model approach, the LETKF will gain a powerful additional advantage: the combination of the 
ensemble weights and the calibration of the model will lead to improved performance over a single 

mailto:ide@umd.edu
http://www.atmos.umd.edu/~ide


2 

model LETKF. The resulting uncertainties are irreducible by the multi-model LETKF. We will extend 
the sensitivity diagnostics to examine the impact the observations and the background (forecast) in the 
uncertainty reduction using the multi-model LETKF. For improved and robust performance, we will 
also integrate the LETKF system into Variational approach. 
 
APPROACH 
 
To build the framework, we take hierarchical approach: first enhance individual elements and then 
integrate them consistently. The individual elements include improvement of existing methods, 
development of new methods, proof of concept of these methods using Observing System Simulation 
Experiments (OSSEs), and implementation to the real physical systems. The optimal framework for 
the ocean prediction system use sophisticated models such as Regional Ocean Model System (ROMS) 
and Geophysical Fluid Dynamics Laboratory Modular Ocean Model (MOM). For the development of 
the hybrid systems, we use the Simplified Parameterizations, primitivE-Equation Dynamics (SPEEDY) 
model. 
 
WORK PURSUED 
 
a. Development of new assimilation method without model 

With the recognition of the importance of coastal oceans where the models have plenty of rooms to 
improve, we developed a new method for the detection of nonlinear instability in time series data 
without any physical model based on the concepts of time embedding and machine learning. 

 

b. Coastal Ocean Data Assimilation 

The LETKF has been interfaced with a ROMS implementation on the Chesapeake Bay (ChesROMS) 
as a first step towards a reanalysis and improved forecast system for the Chesapeake Bay. To account 
for forcing errors, a forcing ensemble is used to drive the ensemble states for the year 2003. 

 

c. Global Ocean Data Assimilation 

The LETKF has been implemented into the global MOM, along with two algorithms for enhanced 
performance, Incremental Analysis Update (IAU) and Running-in-Place (RIP). To evaluate the 
LETKF performance, Optimal Interpolation (OI) was also implemented.  Results of the LETKF-IAU 
and LETKF–RIP are compared with the OI.  

 

d. Hybrid data assimilation system 

Hybrid data assimilation is the method of the choice for the operational numerical weather prediction 
at NOAA for its robust performance. To enhance the performance, a series of schemes are tested in the 
OSSEs setting using the SPEEDY.  Particular topics are the dynamic constraints and variable 
localization (multivariate data assimilation) applied to LETKF. 
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RESULTS 
 
a. Development of new data assimilation method without model 

Applied in the reconstructed phase space based on time embedding, bred vectors have shown to 
correctly identify instabilities corresponding to those in the real, physical space (Fig.1). An effort is on 
going to develop a new data assimilation method based on the time-delay embedding without any 
physical model. Preliminary results are excellent, even outperforms the data assimilation in the 
physical space from the time series (Fig.2).  Investigation is on going to better understand and further 
improve the new data assimilation method. 

 
 

 
 
 

FIG. 1. (Color online) Growth rates of bred vectors in the Lorenz system using three different 
methods: (a) standard breeding in the phase space (x; y; z); (b) nearest-neighbor breeding in the 
phase space (x; y; z); and (c) nearest-neighbor breeding in the reconstructed phase space (x1; x2; 
x3). The colored points correspond to negative (blue), low (green), medium (yellow) and high (red) 

growth; see text for the value of the thresholds. 
 

 

 
 

FIG.2. (Left) Forecast (red) and analysis (blue) using the most recent observed value (green)  
in the embedded space using the three-dimensional embedded space. (Right) corresponding  

root-mean square error. 
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b. Coastal Ocean Data Assimilation 

In the observing system simulation experiments (OSSEs) using the ChesROMS-LETKF, the filter 
converges quickly and greatly reduces the analysis and subsequent forecast errors in the temperature, 
salinity, and current fields in the presence of errors in wind forcing. Errors in the Chesa1peake Bay 
system are due more to errors in forcing than errors in initial conditions. To account or forcing errors, a 
forcing ensemble is used to drive the ensemble states for other years. A year-long model run for 2003 
shows that the ChesROMS model captures the seasonal cycle of temperature and salinity in the Bay as 
well as many features of the Chesapeake circulation, but also contains significant bias and errors that 
can be corrected though assimilation. To investigate the contributions of errors from wind forcing and 
initial conditions, both of these fields were modified to produce free runs in the absence of data 
assimilation. When the only difference between the free run and the nature run is the initial condition, 
the free run converges to the nature run in approximately 2 - 4 weeks. This timescale gives some 
insight into the memory of the system for changes in initial condition and provides a crude bound for 
the limit for forecast improvements. 

 

 
 
Figure 3. Comparison of Seat Surface Temperature for nature=truth (lef), without data assimlation 

(middle), and with data assimilation (right) 
 
c. Global Ocean Data Assimilation 

Examination of observation-minus-background differences shows a substantial reduction of errors as 
the data assimilation becomes more sophisticated (and computationally expensive) using LETKF-
Running In Place (RIP). Reduction in the background error strongly implies a corresponding increase 
in the accuracy of the analysis. Root mean square difference (RMSD) is much smaller for RIP than for 
either Simple Ocean Data Assimilation or Incremental Analysis Update globally for temperature as 
well as salinity. Regionally the same results were found, with only one exception in which the salinity 
RMSD is slightly higher in the equatorial Pacific for RIP versus the other methods. 
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d. Global Atmospheric Data Assimilation 

Hybrid assimilation methods have been proposed and developed to combine the advantages of the 
ensemble and variational methods. To enhance the ensemble effect, we developed a LETKF system 
with geostrophic constraints that eliminates the spurious correlation between uncorrelated variables, 
i.e., variable localization, even when only a small-size ensemble can be afforded because of the 
computational cost. Preliminary results clearly show the impact of both dynamic constraints and 
variable localization (Fig. 4). 

 

  
 

Figure43. Increment by single observation: left to right for (dynamic constraints, variable 
localization): (no, no), (no, yes), (yes, no), (no, no) 

 
 
IMPACT/APPLICATIONS 
 
The results from the LETKBF are encouraging and warrant further exploration of these assimilation 
techniques. EnSRF for complex system does not suffer from transient EC, and hence can be applied to 
realistic ocean data assimilation system.  Development of data-based assimilation method will be 
advanced further to formulate a new type of hybrid data assimilation systems. This provides a new and 
novel way to model and predict sudden transitions in systems represented by time series data alone.   
 
For the global ocean data assimilation, LETKF shows remarkable performance in comparison to the OI 
that have been used to produce the ocean reanalysis data sets. For coastal ocean data assimilation 
systems, the results from the OSSEs of the ChesROMS-LETKF system are promising for assimilating 
real data in the future. The LETKF is promising for the estimation of the uncertainty in the form of 
analysis error. 
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