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LONG-TERM GOALS 

The development, validation and application of robust uncertainty quantification methods to ocean 
modeling, forecasting, and parameter estimation. 

OBJECTIVES 

This project explores the use of Polynomial Chaos (PC) expansions for improving our understanding of 
uncertainties in Ocean General Circulation Models (OGCM). Reliable ocean forecasts require an 
objective, practical and accurate methodology to assess the inherent uncertainties associated with the 
model and data used to produce these forecasts. OGCMs uncertainties stem from several sources that 
include: physical approximation of the governing equations; discretization and modeling errors; an 
incomplete set of sparse (and often noisy) observations to constrain the initial and boundary conditions 
of the model; and uncertainties in surface momentum and buoyancy fluxes. 
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Our objective is the development of an uncertainty quantification methodology that is efficient in 
representing the solution’s dependence on the stochastic data, that is robust even when the solution 
depends discontinuously on the stochastic inputs, that can handle non-linear processes, that propagates 
the full probability density functions without apriori assumption of Gaussianity, and that can be applied 
adaptively to probe regions of steep variations and/or bifurcation in a high-dimensional parametric 
space. In addition we are interested in developing utilities for decision support analysis; specifically, we 
plan to demonstrate how PC representations can be used effectively to determine the non-linear 
sensitivity of the solution to particular components of the random data, identify dominant contributors 
to solution uncertainty, as well as guide and prioritize the gathering of additional data through 
experiments or field observations. 

APPROACH 

Our approach to uncertainty quantification (UQ) relies on PC expansions (Le Maı̂tre and Knio (2010)) 
to investigate uncertainties in simulating the oceanic circulation. We have opted to use the HYbrid 
Coordinate Ocean Model (HYCOM) as our simulation engine because it has been developed as the next 
generation model for the US Navy and has been adopted by NOAAs National Center for Environmental 
Prediction. HYCOM is equipped with a suite of sequential assimilation schemes that will be used to 
investigate how UQ may be beneficial to data assimilation. Details about the model, its validation, and 
sample applications can be found in Bleck (2002); Halliwell (2004); Chassignet et al. (2003, 2006) as 
well as by visiting http://www.hycom.org. Below we present the main ideas of the PC expansion before 
we summarize our efforts since the last annual report of Sep 2012. 

PC expansions express the dependency of the solution on the uncertain parameter as a series of the form: 
u(xxx, t,ξξξ ) = ∑P 

k=0 ûk(xxx, t)Ψk(ξξξ ), where u(xxx, t,ξξξ ) is a model solution that depends on space xxx, time t and 
the uncertain parameters ξξξ ; Ψk(ξξξ ) is a suitably chosen orthogonal basis; and ûk(xxx, t) are the expansion 
coefficients. Here, u can represent a variable expressed directly in the model such as sea surface 
temperature or velocity at a specified point, or a derived quantity such as the mean surface cooling 
under a hurricane track. In the jargon of UQ u is referred to as a Quantity of Interest or an observable. 

The choice of basis function is dictated primarily by the probability density function of the uncertain 
input data, p(ξξξ ), which enters all aspects of the UQ computations. These can be done much more 
efficiently if the basis vectors are orthonormal with respect to p(ξξξ ). Hence the basis functions are 
Legendre, Hermite, or Laguerre polynomials when the input uncertainty is described by uniform, 
Gaussian, or Gamma distributions, respectively. 

The computation of the stochastic modes is best achieved by the so-called Non-Intrusive Spectral 
Projection (NISP) method since we would like to avoid modifying the original OGCM code. Taking 
advantage of the orthonormality of the basis, NISP works by projecting the solution u on the basis 
function Ψk via inner products, and by replacing the integrals with quadrature formula. The coefficients 
can then be computed simply by running the model at specified values of the uncertain parameters, 
storing the desired observable, and post-processing via a simple matrix-vector multiplication. No 
modification to the OGCM need be performed. 

The investigative team at Duke University consisted of Dr. Omar M. Knio, and his post-doctoral 
associates, Drs. Alen Alexanderian and Ihab Sraj, and graduate student, Justin Winokur; they have 
concentrated on advancing the technical and theoretical aspects of the Uncertainty Quantification 
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efforts. Drs. Mohamed Iskandarani (lead PI), Ashwanth Srinivasan and William C. Thacker (University 
of Miami) have focused on formulating the oceanographic uncertainty problems, the modification to the 
HYCOM code and its actual execution, and the preparation of the necessary data to carry out the 
research agenda. Dr. Matthieu Le Henaff assisted us with the Gulf of Mexico configuration, and we 
have held discussions with Dr. François Counillon as to the applicability of PCs in Ensemble Kalman 
Filters based data assimilation. In FY12, we collaborated with Dr. Shuyi Chen on the inverse modelling 
problem discussed below; her research group produced the high-resolution space time atmospheric 
fields needed to force HYCOM during typhoon Fanapi. In FY12, we also collaborated with Dr. Youssef 
Marzouk’s team at MIT on the development and implementation of sparse, adaptive, pseudo-spectral 
quadratures. Two graduate students, Rafael Goncalves and Shitao Wang, are now applying the 
uncertainty quantifications tools to oil spill modelling problems. 

WORK COMPLETED 

Variational Drag-Parameter Estimation 
We have continued working on estimating the drag parameters from AXBT data collected during 
Typhoon Fanapi; but we have developed an alternative solution strategy for the inverse problem which 
reuses the PC surrogate within the context of a variational formulation. Our previous approach, Sraj 
et al. (2013), used a Bayesian inference framework, and relied on Markov Chain Monte-Carlo (MCMC) 
to construct the parameters full posterior distributions. The approach’s efficiency hinged on a faithful 
Polynomial Chaos (PC) surrogate to circumvent the large computational cost associated with the 
MCMC sampling (each sample was the equivalent of a forward HYCOM1 run and 106 samples were 
used). 

The full construction of the posterior may be unnecessary if one is merely interested in the mode of the 
posterior distribution and the uncertainty around it. The posteriors’ center and spread are generally 
sufficient to gauge the value and uncertainty of the optimal parameters, and they can be obtained 
straightforwardly using the PC series. Furthermore, a full distribution could be constructed if the latter 
is assumed to be approximately Gaussian. The advantages of this alternative strategy is that the MCMC 
costs and complications can be avoided, and the PC series can be used to compute the cost function 
gradients without any need for an adjoint code (only forward model runs are needed to build the 
surrogate). 

To this end, the inverse problem in Sraj et al. (2013) is first recast as the minimization of the 
log-likelihood cost function penalizing the misfit between predictions and observations; an optimization 
algorithm is then applied to obtain the solution. A major hurdle is in computing the gradients needed 
during optimization, and which usually necessitates the tedious development and application of an 
adjoint code. Here we completely bypass this hurdle by reusing the surrogate developed in Sraj et al. 
(2013) to compute the necessary gradients. The PC series also delivers the useful but hard to compute 
cost function’s Hessian at very little extra computational cost. The Hessian can be used to enhance the 
robustness and performance of the minimization algorithm, and to provide an estimate of the spread of 
the posterior distribution around the optimal values. Once the surrogate is available, the minimization 
algorithm can proceed without any additional model run. The methodology is applicable to a wide 
range of atmospheric and oceanic models, and has been illustrated here for HYCOM, a full 
three-dimensional and complex Ocean General Circulation model. This work has been summarized in a 

1HYbrid Coordinate Ocean Model 
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manuscript that is currently under review (Sraj et al. (2013, in review)). 

Initial Condition Uncertainty 
We have also been working on using PC series to quantify the initial condition uncertainties in HYCOM 
oceanic forecasts in the Gulf of Mexico. The main challenge here concerns addressing uncertainty in a 
continuous field using a handful of uncertain parameters only. We have adopted Empirical Orthogonal 
Functions (EOFs) as our main tool to effect this “compression” of uncertain variables. These EOFs are 
obtained from Gulf of Mexico Hycom simulations, which, can be used as characteristic modes of 
variability in the Gulf of Mexico. These modes are multiplied by a stochastic amplitude and added to a 
control run; the stochastic amplitude are the uncertain stochastic parameters. We have experimented 
with EOFs from different HYCOM simulation, and we have finally settled on using a 14-day simulation 
to extract relevant EOFs. The uncertainty in these short runs were deemed more likely to represent 
”uncertainty of the day” rather those stemming from year-long runs. Furthermore, the interest in using 
PC in data assimilation favors pursuing perturbation that are localized in space-time rather than ones 
reflecting basin-wide or seasonal dynamics. Figure 2 shows the first 2 SSH modes extracted from a 
14-day simulation. The first mode can be identified with the uncertainty in the strength of a frontal 
eddy, whose interaction with the Loop Current is thought to play an important role in eddy shedding. 
This picture is corroborated in figure 3 where the stronger frontal eddy leads to an early shedding of the 
Loop Current. We have used a PC series with Legendre polynomials for basis function with a maximum 
degree of 6. Gauss-Legendre quadrature of order 6 was used to effect the projection requiring an 
ensemble of 49 members. 

Uncertainty in Oil Spill Modelling 
The GoM simulations are being readied for application in two separate but related areas. The first 
concerns the application of the PC series to data assimilation problems. The second concerns the 
quantification of uncertatinties in oil spill modelling. These efforts are in their early stages but we hope 
to make rapid progress soon, particularly with the help of the graduate students funded by the Gulf of 
Mexico Research Initiative. 

The work associated with this project has been publicized at several conferences, workshops, seminars 
and invited talks, including: 
•	 “Application of Polynomial Chaos Methods to Ocean Modeling” 2013 SIAM Annual Meeting, San 

Diego CA, Jul 8–12 2013. 
•	 “Quantifying Initial Conditions Uncertainties in a Gulf of Mexico HYCOM Ocean Forecast” 

CARTHE Spring Meeting Miami, Florida 29-31 May 2013 
•	 “Combining HYCOM, AXBTs and Polynomial Chaos Methods to Estimate Wind Drag Parameters”, 

Layered Ocean Models Workshop, U. Michigan at Ann Arbor, May 21–23 2013. 
•	 “Quantifying Initial Conditions Uncertainties in a Gulf of Mexico HYCOM Forecast” 2013 Gulf of 

Mexico Oil Spill & Ecosystem Science Conference, 21–23 Jan 2013. 
•	 “Bayesian Inference of Wind Drag Parameters Using ITOP Data and Polynomial Chaos Methods”, 

AMP-CSTAMP seminar, Dec 10 2012. 
•	 “Bayesian inference of wind drag parameters at high wind speeds using a polynomial chaos 

surrogate”, International Conference on Ensemble Methods in Geophysical Sciences Toulouse, 
France, 12-16 November 2012 (poster). 

•	 “Data assimilation using a polynomial chaos based ensemble”, International Conference on 
Ensemble Methods in Geophysical Sciences Toulouse, France, 12-16 November 2012. 

•	 “Inverse Modeling and Sensitivity Analysis in Ocean Models using Polynomial Chaos Expansions” 
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Applied Mathematics and Computational Science Seminar, King Abdallah University of Technology, 
KSA, Oct 2012. 

RESULTS 

Parameter Estimation 
The parameters estimated from the variational solution are listed in table 1. The optimal values of the 
multiplicative drag factor α and saturation wind speed Vmax are in agreement with the 
Maximum-A-Posteriori (MAP) values obtained using the MCMC approach (Sraj et al., 2013). The 
apparent disagreement in the after-saturation slope m is inconsequential as the MCMC analysis showed 
the AXBT data to be uninformative with regard to m. The optimal hyper-parameters measuring 
observational errors σd 

2 are listed in Table 1; the comparison with the MAP values shows a perfect 
agreement between the results of the MCMC and variational approaches. 

Figure 1 shows the posteriors Gaussian fit using the variational means and spreads, and compares them 
to the MCMC posteriors. Those MCMC posteriors that are approximately Gaussian are in good 
agreements with the variational results (α and hyper-parameter posteriors), whereas significant 
disagreement occurs when the posteriors is far from a Gaussian shape (Vmax for example exhibits 
appreciable skewness). 

The variational PC approach offers an attractive solution to parameter identification problems when the 
following issues are relevant: the problem requires a detailed exploration of a relatively 
low-dimensional parameter space; an adjoint model is not available for the complex forward model; the 
optimization solution requires access to the Hessian and/or to a global view of the cost function (e.g. to 
identify local minima); and more detailed information about the posterior distribution is required than 
just its center (e.g. spread). Our exploration to date has shown the great utility of approximating the 
complex model with a series which can be later mined for either statistical inference Sraj et al. (2013) or 
optimial control Sraj et al. (2013, in review). 

Initial Condition Uncertainty in Gulf of Mexico 
Maps of standard deviations for Sea Surface Height (SSH) are shown in figure 4 and indicate that most 
of the uncertainty is concentrated in the Loop Current region and is directly related to the strength of the 
frontal eddy. The approximation error committed in replacing the model with a series is shown in figure 
5 for SSH. These error measures are essential indicator for the reliability of the series. Here, the 
increase in error with time points to a gradual deterioration of the series so that by day 60 the maximum 
SSH error is almost 38% of the maximum standard deviation. This is indicative that the series’ 
approximation property have slowly eroded and that there is additional uncertainty that needs to be 
accounted for. Improvements require a longer series with increased polynomial degree and additional 
sampling of the response surface. We are planning to pursue these line of thought but switching from a 
Gaussian quadrature type to an adaptive pseudo-spectral quadrature Winokur et al. (2013). In the mean 
time we are preparing a manuscript describing the lessons learned from this initial ensemble. 
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Figure 1: Posterior probability distributions for (top) drag parameters and (bottom) variances σd 
2 at 

selected days using variational method (blue curves) and MCMC from Sraj et al. (2013) (black 
curves). The vertical lines correspond to the MAP values determined using MCMC and optimal 

parameters using the variational method. 

Method Variational MCMC 
Parameter Optimal Spread MAP Spread 

α 1.0289 0.0058 1.0267 0.0064 
Vmax 34.0314 1.2754 34.0190 2.4354 

m −1.0195×10−5 3.5214×10−5 −0.4394×10−5 1.0824×10−5 

σ2 
1 0.6554 0.0637 0.6536 0.0655 

σ2 
2 0.5712 0.0435 0.5699 0.0445 

σ2 
3 0.5522 0.0407 0.5578 0.0418 

σ2 
4 0.6684 0.0446 0.6742 0.0455 

σ2 
5 0.9990 0.0686 1.0074 0.0702 

Table 1: Optimal parameters and hyper-parameters and their spread calculated using variational 
and MCMC approaches. 

6 



Figure 2: First and Second SSH modes from a 14-day series. The 2 modes account for 50% of 
variance during these 14 days. The first seems to be dynamically related to the presence of a frontal 

eddy in the Loop Current region. The second mode exhibits significant energy in the same region but 
does not seem to lend itself to a simple dynamical interpretation. 
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Figure 3: SSH evolution for several HYCOM realizations. The run with the most negative 
perturbation (first column) exhibiting the weakest frontal eddy, the control run (second column) is 

associated with a weaker frontal eddy while the third most column has the strongest positive 
perturbations of the 2 EOF modes and exhibits the strongest frontal eddy. The right most column is 

the mean SSH extracted from the PC series. 
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Figure 4: Evolution of the SSH standard deviation’s spatial distribution due to uncertainty in initial 
conditions. The uncertainty maximum at day 20 seems to be related to the early eddy shedding event 
associated with the strongest frontal eddy realization. Most of the uncertainty is located in the Loop 

Current region and increases with time. 

9
 



 
Figure 5: Norm of the PC representation error, IεI2 = ∑q η(xx, t,ξq) − ηPC (xx, t,ξq)

 2 
ωq, for 2 

different forecast days. SSH PC-errors (cm) grow in time with maxima in the Loop Current region. 
On day 60 the PC-error is about 38% of standard deviation and indicates a potential underestimation 

of the uncertainty. 
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IMPACT/APPLICATIONS 

The present project presents an approach to characterize the entire response surface of an ocean model 
to uncertainties in its input data. This has implications for the fields of parameter estimation, and data 
assimilation, particularly for ensemble Kalman filter based approaches. The methodology developed 
here will be of use either for the efficient update of the covariance matrices and/or quantifying the errors 
incurred by small size ensembles. We are currently exploring these ideas. 

TRANSITIONS 

RELATED PROJECTS 

Dr. Ashwanth Srinivasan was partially supported by an NSF-RAPID grant (NSF OCE-1048697) for his 
work on the oil-fate model during the first year of the project. The results from the present proposal are 
directly contributing to two grants from the Gulf of Mexico Research Initiative, namely one through the 
Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) and 
the Deep Sea to Coast Connectivity in the Eastern Gulf of Mexico (Deep-C) consortium. The 
uncertainty quantification tools developed here are being applied to oil-fate modelling. 
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HONORS/AWARDS/PRIZES 

• 13 invited lectures, of which 2 were plenary. 

• O. Knio was named Distinguished Professor, July 1, 2012. 

• O. Knio was elected member of the Editorial Board of SIAM/ASA Journal on Uncertainty 
Quantification. 
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