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LONG-TERM GOALS 
 
To improve our undestanding and predictive capability for three dimensional, time-dependent ocean 
circulation. 
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OBJECTIVES 
 
Our main objective is to develop modeling approaches, theory and observational diagnostics that will 
allow a better understanding of the role of processes that are intrinsically three dimensional and time 
varying. We hope to use this knowledge to inform parameterizations and predictions, and also to guide 
observational strategies, including strategies for autonomous underwater sensors and vehicles. 
 
APPROACH 
 
Our approach centers on the Lagrangian view of ocean circulation; that is, the study of fluid motion 
through tracking of fluid trajectories.  The methods of analysis are based in the mathematical field of 
dynamical systems.  
 
WORK COMPLETED 
 
We have developed a number of methods for identifying and computing internal boundaries and other 
coherent features that drift and evolve with ocean currents and that separate qualitatively different 
regions.  These structures provide a template for understanding fluid pathways, mixing, and transport 
processes in 3D.  These methods have been tested using a variety of models ranging from idealized to 
realistic.  We have also developed diagnostics that indicate when two-dimensional analysis suffices.  
Another major thrust involves the development of methods for assimilating Lagranigan data into ocean 
models.  
 
RESULTS 
 
We note that our program was the subject of a 3-year review at ONR in May of this year. All 
presentations from that meeting can be downloaded from the our MURI program website: 
 
http://www.whoi.edu/ocean3dplus1/ 
 
under MURI meetings.   
 
New methods for computing barriers and other Lagrangian coherent structures (LCS) include the 
ergodicity defect (a measure of  trajectory complexity), Koopman Operator techniques (which rely on 
properties measured along trajectories), techniques that identify regions of high hyperbolicity 
(corresponding to rapid fluid stretching and folding),  and methods that calculate the rate of separation 
of fluid from it neighboors. Examples are depicted in Figures 1-5.  All have been proved capable of 
identifing key Lagrangian structures in the flow field and the choice of a particular method will depend 
on the nature of the model or observation information available  We have also made progress in 
identifying the kind of  barriers that can exist in fully 3D, time-dependent flows (Figures 5-7 and 9).  
Our serarch for barriers is being extended to more realistic 3D+1 simulations (various figures).  
 
 

http://www.whoi.edu/ocean3dplus1/
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Figure 1.  A method for calculation of LCS using measures of trajectory complexity: 
work by Rypina, Pratt, Scott, and Brown. 

 
 

 
 
 

Figure 2.  Mesohyperbolicity identifies areas of strong filamentation (Mezic). 
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Figure 3.  Use of mesohyperbolicity to identify barriers and strongly stirred regions. 
 
 
 

 
 

Figure 4.  The Ergodic Quotient is based on Lagrangian averages of scalar quantities. 
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Figure 5.  Comparison with known examples such as ABC flow is favorable. 
 

 
 

Figure 6. Idealized models of fully 3D eddy circulations tell us what Lagrangian barriers look like in 
3D.  In this case, the barriers consist of tori, including twisted hula hoops. Sandwiched between  

the surfaces are bands and islands of chaos. (From Pratt, Rypina, Ozgokmen, Wang,  
and Childs. JFM 2013. 
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Figure 7: When the flow is fully 3D and time-dependent, the barriers become exotic. 

In this case the cocoon-like structure pulsates and rotates in the eddy. 

 
 

Figure 8:  The methods used to compute LCS also provides information about changes in the 
stirring distribution in the cross section of a fully 3D turbulent rising oil plume. (Ozgokmen) 
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Our team is also exploring the application of LCS methodology in connection with other realistic 
models.  This work emphsizes the role of the submesoscale (Figs. 10-14), which is commonly 
unresolved in ocean models.  
 
 

 
 

Figure 9. We can get a path of understanding into fully 3D, time dependent systems but looking a 
weakly 3D systems for long time intervals.  (Llewellyn Smith) 

 
Figure 10.  We are exploring the effects of submesoscale motions (left), which are unresolved in 

most models.  (Ozgokmen) 



9 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 11.  An order of magnitude increase in frontal turbulent diffusivity after the deep instability 
kicks in; submesoscale overcome by mesoscale in this case. 

 
 

 
 

Figure 12. The instabilities that cause star eddies reside in the submesoscale (Ozgokmen). 
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Figure 13.  We are searching for barriers in realistic 3D, time-dependent eddies. Do we see 

generalizations of the tori found in idealized models? (Ozgokmen, Pratt, Rypina, and Wang.) 
 
 

 
 

Figure 14.  Comparison between LCS are different model resolution. The lower panel  
 resolves the submesoscale. 
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In the area of Lagrangian Data Assimilation (Fig. 15), we are developing methods that are more 
efficient and accurate, and that work in 3D.  This work attempts to use information obtained from LCS 
analysis in order to determine where to best lauch floats and drifters and to optmize navigation strategy 
for autonomous underwater vehicles Fig. 16.   
 
 

 
 
 

Figure 15.  The general ideal behind Lagrangian data assimilation work of Jones,  
Spiller and colleagues. 
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Figure 16.  Is it possible to optimize navigation strategies for AUV’s in order to collect the 
best data for LDA?  (Jones, Spiller and colleagues.) 

 
 
IMPACT/APPLICATIONS 
 
The Lagrangian view offers insights into transport and mixing processes that are different from those 
gained in the Eulerian frame.  These insights naturally lead to better physics-based parameterizations, 
such as turbulent eddy coefficents.  (One of the criticisms of Eulerian-based parameterizations is that 
they depend only on the local properties of the flow and do not consider patches of turbulence that are 
advected into the local.)  Lagrangian methods can also identify time-dependent barriers that may be 
important in predicting regions that polutants, including oil and radioactive material, have difficulty 
crossing.   
 
The Lagrangian approach to data assimilation will, in principle, allow information that has been 
previoiusly discarded to be used in prediction and state estimation.  In particular, previous assimilation 
schemes that use sequences velocity measrments from drifting sensors do not assimilate the 
information that each measurement comes from the same trajectory. 
 
TRANSITIONS 
 
The tools being developed will aid in the prediction of catestrophic release of oil, radioactive material 
or floating debree into the ocean.   
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RELATED PROJECTS 
 
A British Petrolium-funded project on the Gulf of Mexico oil spill.  Prof. Tamay Ozgokmen is 
involved along with several other PIs. 
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