Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring

Eva-Marie Nosal
Department of Ocean and Resources Engineering
University of Hawaii at Manoa
2540 Dole Street, Holmes Hall 405
Honolulu, HI 96822, USA
phone: (808) 956-7686 fax: (808) 956-3498 email: nosal@hawaii.edu

Award Number: N000141210206
http://www.soest.hawaii.edu/ore/faculty/nosal

LONG-TERM GOALS

The long-term goal of this project is to improve model-based passive acoustic methods for tracking marine mammals. When possible, tracking results are used to study marine mammal behavior and bioacoustics.

OBJECTIVES

The first three objectives of this project are to investigate and implement several specific ideas that have the potential to improve the accuracy, efficiency, and applicability of model-based passive acoustic tracking methods for marine mammals:

1) Invert for sound speed profiles, hydrophone position and hydrophone timing offset in addition to animal position.
2) Improve maximization schemes used in model-based tracking.
3) Use information in addition to arrival times for tracking.

The final objective of this project is to:
4) Improve and test approaches to simultaneously track multiple animals simultaneously in cases where it is difficult/impossible to separate and associate calls from individual animals.

APPROACH

Eva-Marie Nosal is the key individual participating in this work as the principal investigator and main researcher.

This project uses existing datasets. The main effort is directed toward data collected at Navy Ranges, with data from PMRF provided by S. Martin and data from AUTEC provided by D. Moretti. Other datasets that use bottom-mounted sensors are also be considered if available and appropriate. The main
species of interest in these datasets are sperm whales, beaked whales, minke whales, and humpback whales. Most methods developed will be generalizable to other species.

This project uses model-based tracking methods [e.g. Tiemann et al. 2004; Thode 2005; Nosal 2007] the have been developed to localize animals in situations where straight-line propagation assumptions made by conventional marine mammal tracking methods fail or result in unacceptably large errors. In the model-based approach, a source is localized by finding the position that gives predicted arrival times that best match the measured arrival times. This is done by creating a likelihood surface that gives the probability of an animal at any position in space. The maxima of this surface give the estimated animal position(s). Arrival time predictions are made using a sound propagation model, which in turn uses information about the environment including sound speed profiles and bathymetry. Calculations are based on measured time-of-arrivals (TOAs) or time-differences-of-arrival (TDOAs), modeled TOAs/TODAs, estimated uncertainties, and any available a priori information. All methods are fully automated through MATLAB code.

The approaches taken for each of the objectives are further expanded separately below:

Objective 1: Invert for sound speed profiles, hydrophone position and hydrophone timing offset in addition to animal position

Almost all marine mammal tracking methods treat animal position as the only unknown model parameter. Other parameters (sound speed, hydrophone position, hydrophone timing) are treated as known inputs and estimated error in these “knowns” is propagated to give error in estimated animal position. This is not always the best approach since it can cause location errors to become unnecessarily large. Moreover, small offsets in hydrophone timing lead to entirely incorrect position estimates (and unfortunately timing is a serious practical problem for passive acoustic tracking systems that comes up repeatedly in real-world datasets). Moreover, there are situations in which sound speeds, phone position and/or timing offsets are entirely unknown.

Sound speed, phone position and/or timing offsets can be readily be included in the set of unknown model parameters in model-based tracking, with any known information incorporated as a priori information. This approach has potential to yield much improved position estimates and/or to give position estimates in cases that would be otherwise impossible. This approach has been used successfully by the underwater acoustics community [e.g. Collins and Kuperman, 1991; Fialkowski et al. 1997; Tollefsen and Dosso, 2009] but modifications for and application to marine mammal tracking remains limited [but see Thode 2000].

Objective 2: Improve maximization schemes used in model-based tracking

In past model-based localization work, likelihood surface maximization has usually been implemented using a grid search (sometimes using multiple-step approach starting with coarse grids that are successively refined). This part of the project investigates the benefit of implementing more sophisticated maximization schemes to find local maxima in the likelihood surfaces. Potential benefits of using these schemes include reduced run times and more precise position estimates. In addition, one serious drawback of the approach from Objective 1 (increased parameter space) is increased computational complexity due to larger search spaces; using more sophisticated maximization schemes is critical in keeping the problem computationally viable.
Objective 3: Use information in addition to arrival times for tracking

Almost all marine mammal tracking methods rely solely on arrival times. There is often additional information that changes with animal position and can consequently be used to obtain/improve position estimates. Several researchers have used sound pressure level or propagation characteristics for tracking [e.g. Cato 1998; McDonald and Fox 1999; McDonald and Moore 2002; Wiggins et al. 2004]. Past approaches have generally been limited to assumptions of omni-directional sources and spherical spreading; assumptions that do not always apply. With some modification, the model-based localization methods used in this project can incorporate source levels and transmission loss and account for confounding factors such as source directionality (e.g. by including animal orientation and beam pattern in the inversion process). These modifications will be made to investigate the feasibility of incorporating received levels in tracking methods.

Objective 4: Multiple animal tracking

One approach taken to track multiple animals involves developing source separation methods that are applied prior to tracking. Once sources have been separated on each hydrophone, the association problem (identifying the same call on all hydrophones) is greatly simplified. If multiple animals can thus be separated and calls associated, the problem is reduced to multiple applications of single-animal tracking methods.

Different approaches for multiple animal tracking are being explored for cases in which source separation/association is not possible. One possibility is to use the model-based tracking framework and include all possible associations (or cross-correlation peaks) in the likelihood surfaces. This approach requires the maximization method from Objective 2.

WORK COMPLETED

There is no completed work from FY13 to report for Objectives 1, 2 and 4 (work for these tasks was reported for FY12).

Objective 3: Theory was developed to localize marine mammals using received sound pressure level. The approach uses differences in received sound pressure levels (DSPLs) in the same way that that time-differences of arrival are used in model-based time of arrival localization methods. A source is localized by finding the position that gives predicted sound pressure levels that best match measured sound pressure levels. Sound pressure level predictions are made using a sound propagation model, which in turn uses information about the environment including sound speed profiles and bathymetry. The method relies on assumptions of omidirectional sources and calibrated hydrophones. The method is illustrated in Figures 1 and 2.
Figure 1. For each hydrophone pair (green circles), ambiguity surfaces (red/blue indicate high/low probability of source presence) are formed from the difference in sound pressure levels received at the two phones.
Simulations to explore and quantify the performance of the DSPL localization method were performed and application to several datasets were made. Comparison with localization results from model-based TDOA show that the method is useful but that errors in position estimate are much larger than errors obtained using TDOA methods. One of the main reasons for large errors is violated assumptions of source omnidirectionality and hydrophone calibration.

Theory, simulation and application results for DSPL model-based localization are currently being prepared for publication.

RESULTS

Objective 3: Using the DSPL model-based localization method developed in this project, sound pressure levels can be used to roughly localize marine mammals with widely-spaced hydrophones (assuming source omni-directionality and if hydrophones calibration). Due to large errors, the DSPL model-based localization method will be most useful in cases with non-synchronized hydrophones or when combined with timing-based localization methods.

IMPACT/APPLICATIONS

The localization and tracking methods developed in this project are useful for monitoring and studying marine mammal bioacoustics and behavior in the wild. Tracking results can be used to establish
detection ranges and calling rates that are critical in density estimation applications. Methods
developed to track marine mammals are useful for sources other than marine mammals (e.g. tracking
of surface vessels can help to monitor fishing efforts in marine protected areas).

RELATED PROJECTS

NSF award 1017775. Signal Processing Methods for Passive Acoustic Monitoring of Marine
Mammals. (PI: E-M Nosal, Co PI: A Host-Madsen). Application of signal processing methods from
speech and communications to passive acoustic monitoring of marine mammals. Focuses on detection
and classification instead of on localization (this project). Progress made in this project directly
benefits the proposed project (and vice versa).

ONR (Ocean Acoustics) N000141010334. Acoustic Seaglider: Philippine Sea Experiment (PI: B
Howe, CoPI: E-M Nosal, G Carter, L VanUffelen). Use of gliders to record transmissions in the
PhilSea10 tomography experiment. Some of the inverse methods used share similar theory and
implementation. In the PhilSea project, the “unknown” of interest is sound speed (hence temperature
and salinity) while in this project it is source location.

REFERENCES

Fialkowski LT, MD Collins, J Perkins, WA Kuperman (1997). Source localization in noisy and

Nosal E-M, LN Frazer (2007). Sperm whale three-dimensional track, swim orientation, beam
 patter, and click levels observed on bottom-mounted hydrophones. *J. Acoust. Soc. Am.* 122(4),

McDonald MA, CG Fox (1999). Passive acoustic methods applied to fin whale population density

McDonald, MA, SE Moore (2002). Calls recorded from North Pacific right whales (Eubalaena
 japonica) in the eastern Bering Sea. *J. Cetacean Res. Manage.* 4:261 - 266.

Thode A (2000). Matched-field processing, geoacoustic inversion, and source signature recovery of

PUBLICATIONS

Papers

Book chapter

Conference abstracts