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LONG-TERM GOALS 

Fuse refractivity inferred from electromagnetic (EM) propagation observations with background fields 
from numerical weather prediction (NWP) models. 

OBJECTIVES 

Develop data fusion method for atmospheric refractivity scheme based on objective analysis. Develop 
means to map observations of refractivity based on RF propagation measurements into the space 
utilized for the analysis. Exercise the data fusion scheme on a combination of synthetic and real data to 
assess performance. Acheive reasonable processing time (on the order of 1-minute) with a 
representative domain size using a high-end laptop computer. 

APPROACH 

An initial approach to estimation of atmospheric surface layer parameters by fusing radar clutter data 
with ensemble predictions from NWP is described in [1]. That work was completed in the beginning of 
the 2013 Fiscal Year. We now describe a fusing EM observations with NWP background for the region 
above the surface layer (that includes surface based ducts and elevated ducts). 

In fusing EM observations with background from NWP, some considerations include: 

1. The mapping from the space of EM signal enhancement (typically dBs) into the space of
 
modified refractivity is non-linear, sometimes highly so.
 

2. NWP output is in the space of refractivity as a function of three spatial dimensions and virtually 
all EM inverse method implementations (e.g., refractivity-from-clutter) are in the space of 
parameters such as the trapping layer height and the “M-deficit” (the change in refractivity across 
a trapping layer). 

3. EM propagation is highly sensitive to the vertical displacement of features and performing the 
objective analysis in the space of Cartesian coordinates results in smearing when features in the 
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background (i.e., model predictions) and observations are displaced from one another. 

Due to the degree of non-linearity in the problem, it is doubtful that a best approach can be analytically 
arrived at. Rather, how to best implement the problem of performing an objective analysis for 
refractivity is amenable to a variety of alternative approaches. 

We implement a hybrid 3-and-2 dimensional variational analysis scheme (3D/2D-VAR) [2 and 3]. We 
start with the Cartesian representation of refractivity generated by the COAMPS model, referred to here 
as “prognostic” representation. We utilize diagnositc routines to find heights and modified refractivity 
values for inflection points associated with trapping layers for each vertical refractivity profile in the 
prognostic refractivity volume. The diagnostic variables facilitate direct operations on the heights and 
gradients of trapping layers. It should be noted, though, that diagnostic variables only represent the 
features that are important in EM propagation. For example, if a surface based duct were present with 
the top of the duct at 200 meters, then only the lower 200 meters of the refractivity profile would be 
characterized by the diagnostic variables – so it would not be unusual for the diagnostic variables to not 
contain features above 200-or-so meters These result is that the 3-D prognostic representation is 
augmented with a 2-D diagnostic representation. The mapping from the space of the prognostic values 
to the space of the diagnostic values is unique; that is not necessarily so in the other direction. The 
process flow in as follows: 

1. COAMPS M-value fields are used to populate the prognostic background representation. 

2. Diagnositic algorithms populate the dignostic background representation from the prognostic 
representation. 

3. Observations of EM propagation are mapped into space of the diagnostic variables. The 
diagnostic variables include the height of the top of the trapping layer, the M-excess (the 
difference between the value of modified refractivity at the top of the layer and at the surface) and 
so-on; these are the quantities typically utilized in inversions of refractivity from signal power 
measurements and inversion of refractivity from radar clutter. 

4. An objective analysis is performed in the space of the diagnostic variables. This results – as is the 
normal result for objective analysis – resulted in an adjustment in the 2-D representation of 
refractivity over the domain of the diagnosic variables. 

5. In a step referred to as “vertical integration” the analysis on the diagnostic variables is mapped 
into the space of the prognostic variables in region described by the diagnostic variables. This 
does not alter values in the region outside that represented by the diagnostic variables. Both the 
prognostic background values and the diagnostic analysis values are used to generate a feature 
preserving (i.e., preserving the features of the original prognostic profile) analysis in the space of 
the prognostic variables. 

6. Treating the prognostic variables that were adjusted during the vertical integration step as hard 
constraints, an analysis is generated on the balance of the points in the prognostic representation. 

A pitfall with this method is that Steps 2 and 5 are reliant on hueristic constructs and are likely to 
require significant testing and re-work to achieve robust operation. 

With all such analysis schemes, determination of background and observation error covariances is a 
central issue. At the scales we are interested in – up to a few hundred kilometers in range and 
(generally) lower than 1000 meters, and in the space of modified refractivity in represented in both 
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Cartesian coordinates and in the diagnostic parameter surfaces, these covariances have not been of 
interest before. Our approach is to utilize covariances based on parametric equations commonly used in 
data assimilation and then employ ensemble forecasting and observations to set the parameter values. 

WORK COMPLETED 

The dual-space objective analysis scheme has been developed in Matlab. At a high level, this includes 
implementation of diagnostic routines to map COAMPS fields into the space of the diagnostic variables 
and populating both the prognositc and diagnostic spaces. The framework has been exercised using 
Exercising framework with simulated refractivity observations as would be provided by 
refractivity-from-clutter and refractivity-from-radio with background covariance based on ad hoc 
parameter values. An example is shown in Figure 1. A detailed explaination of the figure is as follows: 

1. The upper-left plot show refractivity profiles on a 275 km West-to-East cross-section in the 
southern California basin. The legend in the upper right indicates the definition of symbols used 
in the plot. The inflection points, minimum M values and so on are used to diagnose the heights 
of the top and bottom of the trapping layer and subsequently populate the diagnostic variables 
over the domain. 

2. The lower left plot shows the analysis that results from “assimilating” an incresese in the 
M-excess of 5 M-units at the location of the 5th refractivity profile as a hard constraint. Such a 
constraint – either hard or soft – would arise from observed signal strengths being higher than that 
predicted using the NWP background. In the presence of a background error covariance that has 
non-zero elements for both the top of the trapping layer and the M-excess (both diagnostic 
variables) and their cross-covariance terms, a change in both parameters can be expected to result 
from an observed change in the M-excess. In this instance, the incorporation of the constraint 
increasing the M-excess has resulted in both a lowering and strengthening of the layer, which is 
an expected behavior. 

3. The background covariance determines how the influence of an observation diminish with range. 
As can be seen in the lower plot, at the far right (Eastern) end of the cross-section, the difference 
between the background and the analysis is minimal whereas in the region between 0 km and 
∼ 140 km, the influence is far more substantial. Again, this is the expected behavior. 

4. The picture on the lower right shows the location of the path. 

We completed a first paper on impementing an objective analysis for two parameters (relative humidity 
and air-sea-temperature-difference) associated with the atmospheric surface layer [1]. A key result of 
the work was the indication that radar clutter observations at S-band result in a constraint in the space of 
those two variables. 

Two NWP ensembles in the region of the Hawaiian Islands are used here that are known to have 
evaporation ducting conditions. The first is a 16-member ensemble on the air-sea boundary layer at 
12 am on May 7, 2008, and the second is a 32-member ensemble that correspond to July 26–28, 2008 
with 3 hour gaps starting from 12 am UTC. The data that correspond to 12 am UTC May 7, 2008 are 
shown in Fig 2. Atmospheric parameters shown in that figure are all at 10 m. Sea temperature in general 
is higher than the air temperature in this dataset. COAMPS outputs at 10 m are used as inputs to 
NAVSLaM to find the evaporation duct profiles at each location. The average and standard deviation of 
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duct heights are shown in Fig. 3. Duct height is not very sensitive to ΔT changes where air temperature 
is less than the sea temperature. The ensemble for July 26–28, 2008 shows similar variations in the 
standard deviation of atmospheric variables and duct heights, and thus are not shown. 

A quadratic metric is defined to measure the fitness of each set of candidate atmospheric variables m to 
predicted values by NWP and inversions of observed clutter power Po. Here, m = [ΔT, RH]T, with 
atmospheric variables at a height of 10 m . The clutter power fall-off rate does not convey information 
about the air pressure and absolute value of the wind-speed, and it is a weak function of sea-surface 
temperature. Hence, these are used directly from NWP. 

Analysis of NWP outputs indicates that assuming a range-independent profile for a radius of 20–25 km 
is reasonable far from the coasts. Simulations in this paper are made by taking the average COAMPS 
predictions at the location of interest and assuming that the ΔT, humidity and wind profiles are 
range-independent up to a range of 25 km. The same approach can be extended to range-dependent 
profile inversions where the state vector will be larger. 

The examples in Fig. 4 consider the radar clutter with CNR of 25 dB at the range of 10 km. A 5◦ 

azimuthal segment is used for each inversion where synthetic clutter power is generated with 
independent noises and 1◦ azimuthal spacing. The logarithmic radar cross section is assumed to have a 
Gaussian density with zero mean and 3 dB standard deviation. The average of the NWP ensemble is 
taken as the true state and used to generate 100 clutter power realizations. Synthetic clutter powers in 
the range of 5–25 km with bins every 1 km are used for RFC-ED inversions and joint NWP, RFC-ED 
inversions. Two-dimensional and marginal densities of NWP ensemble, RFC-ED inversions and joint 
inversions are all demonstrated in these plots. Histograms of inverted duct heights obtained from 
RFC-ED inversions are also plotted. 

RESULTS 

The key results so far is that we know that we can implement the hybrid analysis at operational scales, 
on a Windows or Mac laptop and acheive run-times on the order of seconds to a minute or so. 

IMPACT/APPLICATIONS 

A trend in radar and radio is to enable tapping of device status and data such as as observed power to 
other devices. For example, clutter power measurements with the SPS-48 E are now provided to 
down-stream processing to enable display of hazardous weather. RDF in conjunction with inverse 
methods in EM propagation enables using such data to refine refractivity estimation. 

TRANSITIONS 

The refractivity data fusion (RDF) has been selected as a Rapid Transition Project under SPAWAR 
PMW-120 and ONR-322 funding. 
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Figure 1: An example of RDF. The top plot shows a range series of refractivity profiles from 
COAMPS. The bottom plot shows the result of implementing the RDF objective analysis using a 

constraint that increases the M-excess at the 5th profile from the west (left). A legend is in the upper 
right indicates the definition of symbols shown in the plot. The values associated with the symbols 

are used in generating the diagnostic parameters. The picture in the lower right shows the 
geographic domain with a white line indicating the location of the range series of refractivity 

profiles. The objective analysis in the space of the diagnostic variables (which includes the M-excess) 
results in both a lowering of the top of the trapping layer and a more negative average refractivity 

gradient in the region below the trapping layer. That response is a function of the background 
covariance and is an expected behavior. Note that the symbol associated with the term “tangent” 
indicates the point where a line drawn from the value of M at the bottom of the profile becomes 

tangent with the profile from its left side in the figure. 
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Figure 2: Average values (top row) and standard deviation (bottom row) of COAMPS ensemble of 
wind-speed, air-sea/ground temperature difference and relative humidity at 10 m around the Hawaii 

Islands for May 7, 2008 at 12 am UTC using 5 km grid spacings. The last column is the observed 
surface temperature (sea or ground surface) during the same time using buoy and ship data. For 

more details see Karimian et al. [2013]. 
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Figure 3: (a) Average and (b) standard deviation of duct heights obtained by running NAVSLaM on 
the COAMPS ensemble in Fig. 2. The geographic locations of cases analyzed in Figs. 4–?? are 

marked by white (∗), (×) and (square), respectively. For more details see Karimian et al. [2013]. 
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Figure 4: Case 1, ΔT < 0 corresponding to 12 am UTC May 7, 2008 at [120, 330] km in Fig. 2, (a–c): 
Scatter plots of ΔT and RH, and their marginal densities obtained by (a) COAMPS ensemble, (b) 
RFC-ED, (c) joint NWP, RFC-ED. The NWP ensemble mean (square) is used for clutter power 
simulations. (d): Histogram of duct heights obtained by RFC-ED in (b). For more details see 

Karimian et al. [2013]. 
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